Department of Intelligent Commerce, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, ROC.
Institute of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan, ROC.
Neural Netw. 2022 May;149:40-56. doi: 10.1016/j.neunet.2022.02.007. Epub 2022 Feb 12.
In many real-world classification problems, the available information is often uncertain. In order to effectively describe the inherent vagueness and improve the classification performance, this paper proposes a novel possibilistic classification algorithm using support vector machines (SVMs). Based on possibility theory, the proposed algorithm aims at finding a maximal-margin fuzzy hyperplane by solving a fuzzy mathematical optimization problem Moreover, the decision function of the proposed approach is generalized such that the values assigned to the data vectors fall within a specified range and indicate the membership grade of these data vectors in the positive class. The proposed algorithm retains the advantages of fuzzy set theory and SVM theory. The proposed approach is more robust for handling data corrupted by outliers. Moreover, the structural risk minimization principle of SVMs enables the proposed approach to effectively classify the unseen data. Furthermore, the proposed algorithm has additional advantage of using vagueness parameter v for controlling the bounds on fractions of support vectors and errors. The extensive experiments performed on benchmark datasets and real applications demonstrate that the proposed algorithm has satisfactory generalization accuracy and better describes the inherent vagueness in the given dataset.
在许多实际的分类问题中,可用信息通常是不确定的。为了有效地描述内在的模糊性并提高分类性能,本文提出了一种基于支持向量机(SVM)的新型可能分类算法。该算法基于可能性理论,旨在通过求解模糊数学优化问题来找到最大边界模糊超平面。此外,该方法的决策函数被推广,使得分配给数据向量的值落在指定范围内,并表示这些数据向量属于正类的隶属度。所提出的算法保留了模糊集理论和 SVM 理论的优势。该方法对于处理受异常值污染的数据更加稳健。此外,SVM 的结构风险最小化原则使所提出的方法能够有效地对未见数据进行分类。此外,该算法还具有使用模糊参数 v 来控制支持向量和误差的分数边界的优点。在基准数据集和实际应用上进行的广泛实验表明,所提出的算法具有令人满意的泛化准确性,并更好地描述了给定数据集中的固有模糊性。