Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, 69364 Lyon Cedex 07, France.
Department of Pharmacological, Medical and Agronomical Biotechnology, University of Science and Technology of Hanoi, Cau Giay District, Hanoi 11300, Vietnam.
Proc Natl Acad Sci U S A. 2023 Jul 25;120(30):e2302441120. doi: 10.1073/pnas.2302441120. Epub 2023 Jul 17.
To relate gene networks and organ shape, one needs to address two wicked problems: i) Gene expression is often variable locally, and shape is reproducible globally; ii) gene expression can have cascading effects on tissue mechanics, with possibly counterintuitive consequences for the final organ shape. Here, we address such wicked problems, taking advantage of simpler plant organ development where shape only emerges from cell division and elongation. We confirm that mutation in VERNALIZATION INDEPENDENCE 3 (), a subunit of the conserved polymerase-associated factor 1 complex (Paf1C), increases gene expression variability in Arabidopsis. Then, we focused on the Arabidopsis sepal, which exhibits a reproducible shape and stereotypical regional growth patterns. In sepals, we measured higher growth heterogeneity between adjacent cells. This even culminated in the presence of negatively growing cells in specific growth conditions. Interestingly, such increased local noise interfered with the stereotypical regional pattern of growth. We previously showed that regional differential growth at the wild-type sepal tip triggers a mechanical conflict, to which cells resist by reinforcing their walls, leading to growth arrest. In , the disturbed regional growth pattern delayed organ growth arrest and increased final organ shape variability. Altogether, we propose that gene expression variability is managed by Paf1C to ensure organ robustness by building up mechanical conflicts at the regional scale, instead of the local scale.
为了将基因网络与器官形状联系起来,人们需要解决两个棘手的问题:i)基因表达通常在局部具有变异性,而形状在全局上具有可重复性;ii)基因表达可以对组织力学产生级联效应,对最终器官形状可能产生违反直觉的后果。在这里,我们利用植物器官发育相对简单的优势,即形状仅由细胞分裂和伸长产生,来解决这些棘手的问题。我们证实,保守的聚合酶相关因子 1 复合物(Paf1C)亚基 VERNALIZATION INDEPENDENCE 3 () 的突变会增加拟南芥中基因表达的可变性。然后,我们将重点放在拟南芥萼片上,它具有可重复的形状和典型的区域生长模式。在萼片中,我们测量到相邻细胞之间的生长异质性更高。在特定的生长条件下,甚至会出现负向生长的细胞。有趣的是,这种增加的局部噪声干扰了典型的区域生长模式。我们之前曾表明,在野生型萼片尖端的区域差异生长会引发机械冲突,细胞通过加强细胞壁来抵抗这种冲突,从而导致生长停止。在 中,受干扰的区域生长模式会延迟器官生长停止,并增加最终器官形状的可变性。总之,我们提出,基因表达的可变性由 Paf1C 来管理,通过在区域尺度上构建机械冲突来确保器官的稳健性,而不是在局部尺度上。