Coen Enrico, Cosgrove Daniel J
Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.
Department of Biology, Pennsylvania State University, University Park, PA 16870, USA.
Science. 2023 Feb 3;379(6631):eade8055. doi: 10.1126/science.ade8055.
Understanding the mechanism by which patterned gene activity leads to mechanical deformation of cells and tissues to create complex forms is a major challenge for developmental biology. Plants offer advantages for addressing this problem because their cells do not migrate or rearrange during morphogenesis, which simplifies analysis. We synthesize results from experimental analysis and computational modeling to show how mechanical interactions between cellulose fibers translate through wall, cell, and tissue levels to generate complex plant tissue shapes. Genes can modify mechanical properties and stresses at each level, though the values and pattern of stresses differ from one level to the next. The dynamic cellulose network provides elastic resistance to deformation while allowing growth through fiber sliding, which enables morphogenesis while maintaining mechanical strength.
理解模式化基因活动导致细胞和组织机械变形以形成复杂形态的机制,是发育生物学面临的一项重大挑战。植物为解决这个问题提供了优势,因为它们的细胞在形态发生过程中不会迁移或重新排列,这简化了分析。我们综合实验分析和计算建模的结果,以展示纤维素纤维之间的机械相互作用如何在细胞壁、细胞和组织层面传递,从而产生复杂的植物组织形状。基因可以改变每个层面的机械性能和应力,尽管不同层面的应力值和模式有所不同。动态的纤维素网络为变形提供弹性阻力,同时允许通过纤维滑动实现生长,这使得形态发生能够在保持机械强度的同时进行。