Suppr超能文献

基于结构的神经退行性疾病卷积神经网络用于阿尔茨海默病的建模和分类。

Structure focused neurodegeneration convolutional neural network for modelling and classification of Alzheimer's disease.

机构信息

School of Engineering, University of the West of England, Bristol, UK.

Computer Science, Baze University, Abuja, Nigeria.

出版信息

Sci Rep. 2024 Jul 3;14(1):15270. doi: 10.1038/s41598-024-60611-8.

Abstract

Alzheimer's disease (AD), the predominant form of dementia, is a growing global challenge, emphasizing the urgent need for accurate and early diagnosis. Current clinical diagnoses rely on radiologist expert interpretation, which is prone to human error. Deep learning has thus far shown promise for early AD diagnosis. However, existing methods often overlook focal structural atrophy critical for enhanced understanding of the cerebral cortex neurodegeneration. This paper proposes a deep learning framework that includes a novel structure-focused neurodegeneration CNN architecture named SNeurodCNN and an image brightness enhancement preprocessor using gamma correction. The SNeurodCNN architecture takes as input the focal structural atrophy features resulting from segmentation of brain structures captured through magnetic resonance imaging (MRI). As a result, the architecture considers only necessary CNN components, which comprises of two downsampling convolutional blocks and two fully connected layers, for achieving the desired classification task, and utilises regularisation techniques to regularise learnable parameters. Leveraging mid-sagittal and para-sagittal brain image viewpoints from the Alzheimer's disease neuroimaging initiative (ADNI) dataset, our framework demonstrated exceptional performance. The para-sagittal viewpoint achieved 97.8% accuracy, 97.0% specificity, and 98.5% sensitivity, while the mid-sagittal viewpoint offered deeper insights with 98.1% accuracy, 97.2% specificity, and 99.0% sensitivity. Model analysis revealed the ability of SNeurodCNN to capture the structural dynamics of mild cognitive impairment (MCI) and AD in the frontal lobe, occipital lobe, cerebellum, temporal, and parietal lobe, suggesting its potential as a brain structural change digi-biomarker for early AD diagnosis. This work can be reproduced using code we made available on GitHub.

摘要

阿尔茨海默病(AD)是痴呆症的主要形式,是一个日益严重的全球性挑战,强调了准确和早期诊断的迫切需要。目前的临床诊断依赖于放射科医生的专家解读,容易出现人为错误。深度学习在早期 AD 诊断方面已经显示出了前景。然而,现有的方法往往忽略了对于增强对大脑皮层神经退行性变理解至关重要的局灶性结构萎缩。本文提出了一种深度学习框架,包括一种名为 SNeurodCNN 的新的基于结构的神经退行性变卷积神经网络架构,以及使用伽马校正的图像亮度增强预处理。SNeurodCNN 架构的输入是通过磁共振成像(MRI)捕获的大脑结构分割产生的局灶性结构萎缩特征。因此,该架构仅考虑实现所需分类任务所需的必要 CNN 组件,包括两个下采样卷积块和两个全连接层,并利用正则化技术来正则化可学习参数。该框架利用来自阿尔茨海默病神经影像学倡议(ADNI)数据集的中矢状位和旁矢状位脑图像视点,取得了卓越的性能。旁矢状位的准确率达到 97.8%,特异性达到 97.0%,敏感性达到 98.5%,而中矢状位则提供了更深入的见解,准确率达到 98.1%,特异性达到 97.2%,敏感性达到 99.0%。模型分析表明,SNeurodCNN 能够捕捉轻度认知障碍(MCI)和 AD 患者额叶、枕叶、小脑、颞叶和顶叶的结构动态,这表明其作为早期 AD 诊断的脑结构变化数字生物标志物的潜力。这项工作可以使用我们在 GitHub 上提供的代码进行重现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b7b/11222499/8c868baa09b6/41598_2024_60611_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验