文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过体外和体内生物催化拓展化学。

Expanding chemistry through in vitro and in vivo biocatalysis.

机构信息

Department of Chemistry, University of California Berkeley, Berkeley, CA, USA.

Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA.

出版信息

Nature. 2024 Jul;631(8019):37-48. doi: 10.1038/s41586-024-07506-w. Epub 2024 Jul 3.


DOI:10.1038/s41586-024-07506-w
PMID:38961155
Abstract

Living systems contain a vast network of metabolic reactions, providing a wealth of enzymes and cells as potential biocatalysts for chemical processes. The properties of protein and cell biocatalysts-high selectivity, the ability to control reaction sequence and operation in environmentally benign conditions-offer approaches to produce molecules at high efficiency while lowering the cost and environmental impact of industrial chemistry. Furthermore, biocatalysis offers the opportunity to generate chemical structures and functions that may be inaccessible to chemical synthesis. Here we consider developments in enzymes, biosynthetic pathways and cellular engineering that enable their use in catalysis for new chemistry and beyond.

摘要

生命系统中包含着庞大的代谢反应网络,为化学过程提供了丰富的酶和细胞作为潜在的生物催化剂。蛋白质和细胞生物催化剂的特性——高选择性、控制反应序列和在环境友好条件下操作的能力——为高效生产分子提供了途径,同时降低了工业化学的成本和环境影响。此外,生物催化为生成可能无法通过化学合成获得的化学结构和功能提供了机会。在这里,我们考虑了酶、生物合成途径和细胞工程的发展,这些发展使它们能够用于催化新的化学物质和超越化学物质的应用。

相似文献

[1]
Expanding chemistry through in vitro and in vivo biocatalysis.

Nature. 2024-7

[2]
Tailoring enzyme microenvironment: State-of-the-art strategy to fulfill the quest for efficient bio-catalysis.

Int J Biol Macromol. 2019-2-25

[3]
Engineering the third wave of biocatalysis.

Nature. 2012-5-9

[4]
Multifunctional Biocatalysts for Organic Synthesis.

J Am Chem Soc. 2024-3-27

[5]
Dispelling the myths--biocatalysis in industrial synthesis.

Science. 2003-3-14

[6]
Structure and Cooperativity in Substrate-Enzyme Interactions: Perspectives on Enzyme Engineering and Inhibitor Design.

ACS Chem Biol. 2022-2-18

[7]
Natural, engineered, and artificial biocatalysts for organic synthesis.

Bioorg Med Chem. 2014-10-15

[8]
Whole-cell biocatalysis for selective and productive C-O functional group introduction and modification.

Chem Soc Rev. 2013-8-7

[9]
From nature to industry: Harnessing enzymes for biocatalysis.

Science. 2023-11-24

[10]
Biocatalysis making waves in organic chemistry.

Chem Soc Rev. 2022-1-24

引用本文的文献

[1]
Is a Malleable Active Site Loop the Key to High Substrate Promiscuity? Hybrid, Biocatalytic Route to Structurally Diverse Taxoid Side Chains with Remarkable Dual Stereocontrol.

Angew Chem Int Ed Engl. 2025-6-19

[2]
Selective Oxidation of Disparate Functional Groups Mediated by a Common Aspartic Acid-Based Peptide Catalyst Platform.

Acc Chem Res. 2025-6-18

[3]
Electricity-driven enzymatic dynamic kinetic oxidation.

Nature. 2025-7

[4]
C-C Bond Cleavage in the Late-Stage Biosynthesis of Huperzine Alkaloids Occurs via Enzymatic Retro-Aza-Prins Reaction.

J Am Chem Soc. 2025-6-18

[5]
Discovery, design, and engineering of enzymes based on molecular retrobiosynthesis.

mLife. 2025-3-28

[6]
Designing Enzymatic Reactivity with an Expanded Palette.

Chembiochem. 2025-6-3

[7]
Transforming a Historical Chemical Synthetic Route for Vanillin Starting from Renewable Eugenol to a Cell-Free Bi-Enzymatic Cascade.

ChemSusChem. 2025-6-2

[8]
Magnetizing Biotech-Advances in (In Vivo) Magnetic Enzyme Immobilization.

Eng Life Sci. 2025-3-13

[9]
'Need for speed: high throughput' - mass spectrometry approaches for high-throughput directed evolution screening of natural product enzymes.

Nat Prod Rep. 2025-2-27

[10]
Expanding beyond the capability of nature.

Nat Chem Biol. 2025-1

本文引用的文献

[1]
Stereoselective amino acid synthesis by synergistic photoredox-pyridoxal radical biocatalysis.

Science. 2023-7-28

[2]
Single-cell multi-omics in the medicinal plant Catharanthus roseus.

Nat Chem Biol. 2023-8

[3]
Complete integration of carbene-transfer chemistry into biosynthesis.

Nature. 2023-5

[4]
An NmrA-like enzyme-catalysed redox-mediated Diels-Alder cycloaddition with anti-selectivity.

Nat Chem. 2023-4

[5]
Active site remodelling of a cyclodipeptide synthase redefines substrate scope.

Commun Chem. 2022-8-25

[6]
Biosynthesis of selenium-containing small molecules in diverse microorganisms.

Nature. 2022-10

[7]
Autonomous Chemical Experiments: Challenges and Perspectives on Establishing a Self-Driving Lab.

Acc Chem Res. 2022-9-6

[8]
Discovery, structure and mechanism of a tetraether lipid synthase.

Nature. 2022-9

[9]
Chemoenzymatic synthesis of fluorinated polyketides.

Nat Chem. 2022-9

[10]
Engineering site-selective incorporation of fluorine into polyketides.

Nat Chem Biol. 2022-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索