Suppr超能文献

基于分子逆向生物合成的酶的发现、设计与工程

Discovery, design, and engineering of enzymes based on molecular retrobiosynthesis.

作者信息

Chen Ancheng, Peng Xiangda, Shen Tao, Zheng Liangzhen, Wu Dong, Wang Sheng

机构信息

Shanghai Zelixir Biotech Company Ltd. Shanghai China.

出版信息

mLife. 2025 Mar 28;4(2):107-125. doi: 10.1002/mlf2.70009. eCollection 2025 Apr.

Abstract

Biosynthesis-a process utilizing biological systems to synthesize chemical compounds-has emerged as a revolutionary solution to 21st-century challenges due to its environmental sustainability, scalability, and high stereoselectivity and regioselectivity. Recent advancements in artificial intelligence (AI) are accelerating biosynthesis by enabling intelligent design, construction, and optimization of enzymatic reactions and biological systems. We first introduce the molecular retrosynthesis route planning in biochemical pathway design, including single-step retrosynthesis algorithms and AI-based chemical retrosynthesis route design tools. We highlight the advantages and challenges of large language models in addressing the sparsity of chemical data. Furthermore, we review enzyme discovery methods based on sequence and structure alignment techniques. Breakthroughs in AI-based structural prediction methods are expected to significantly improve the accuracy of enzyme discovery. We also summarize methods for de novo enzyme generation for nonnatural or orphan reactions, focusing on AI-based enzyme functional annotation and enzyme discovery techniques based on reaction or small molecule similarity. Turning to enzyme engineering, we discuss strategies to improve enzyme thermostability, solubility, and activity, as well as the applications of AI in these fields. The shift from traditional experiment-driven models to data-driven and computationally driven intelligent models is already underway. Finally, we present potential challenges and provide a perspective on future research directions. We envision expanded applications of biocatalysis in drug development, green chemistry, and complex molecule synthesis.

摘要

生物合成——一种利用生物系统合成化合物的过程——因其环境可持续性、可扩展性以及高立体选择性和区域选择性,已成为应对21世纪挑战的革命性解决方案。人工智能(AI)的最新进展通过实现酶促反应和生物系统的智能设计、构建和优化,正在加速生物合成。我们首先介绍生化途径设计中的分子逆合成路线规划,包括单步逆合成算法和基于AI的化学逆合成路线设计工具。我们强调大语言模型在解决化学数据稀疏性方面的优势和挑战。此外,我们回顾基于序列和结构比对技术的酶发现方法。基于AI的结构预测方法的突破有望显著提高酶发现的准确性。我们还总结了针对非天然或孤儿反应的从头酶生成方法,重点是基于AI的酶功能注释以及基于反应或小分子相似性的酶发现技术。转向酶工程,我们讨论提高酶热稳定性、溶解度和活性的策略,以及AI在这些领域的应用。从传统的实验驱动模型向数据驱动和计算驱动的智能模型的转变已经在进行中。最后,我们提出潜在挑战并展望未来的研究方向。我们设想生物催化在药物开发、绿色化学和复杂分子合成中的应用将会扩大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a8a/12042125/3c2b4c36a11b/MLF2-4-107-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验