Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA.
Graduate Program in Biological Sciences, University of Maryland, College Park, MD, USA.
Nat Med. 2024 Sep;30(9):2461-2472. doi: 10.1038/s41591-024-03092-6. Epub 2024 Jul 3.
Immunological health has been challenging to characterize but could be defined as the absence of immune pathology. While shared features of some immune diseases and the concept of immunologic resilience based on age-independent adaptation to antigenic stimulation have been developed, general metrics of immune health and its utility for assessing clinically healthy individuals remain ill defined. Here we integrated transcriptomics, serum protein, peripheral immune cell frequency and clinical data from 228 patients with 22 monogenic conditions impacting key immunological pathways together with 42 age- and sex-matched healthy controls. Despite the high penetrance of monogenic lesions, differences between individuals in diverse immune parameters tended to dominate over those attributable to disease conditions or medication use. Unsupervised or supervised machine learning independently identified a score that distinguished healthy participants from patients with monogenic diseases, thus suggesting a quantitative immune health metric (IHM). In ten independent datasets, the IHM discriminated healthy from polygenic autoimmune and inflammatory disease states, marked aging in clinically healthy individuals, tracked disease activities and treatment responses in both immunological and nonimmunological diseases, and predicted age-dependent antibody responses to immunizations with different vaccines. This discriminatory power goes beyond that of the classical inflammatory biomarkers C-reactive protein and interleukin-6. Thus, deviations from health in diverse conditions, including aging, have shared systemic immune consequences, and we provide a web platform for calculating the IHM for other datasets, which could empower precision medicine.
免疫健康一直难以描述,但可以定义为没有免疫病理学。虽然已经开发出了一些免疫性疾病的共同特征和基于年龄独立适应抗原刺激的免疫弹性概念,但免疫健康的一般指标及其用于评估临床健康个体的效用仍未得到明确界定。在这里,我们整合了 228 名患有影响关键免疫途径的 22 种单基因疾病患者的转录组学、血清蛋白、外周免疫细胞频率和临床数据,以及 42 名年龄和性别匹配的健康对照者。尽管单基因病变的外显率很高,但不同个体在多种免疫参数上的差异往往超过疾病状况或药物使用所导致的差异。无监督或有监督的机器学习独立地确定了一个可以区分健康参与者和单基因疾病患者的分数,从而提出了一种定量的免疫健康指标(IHM)。在十个独立的数据集,IHM 区分了健康与多基因自身免疫和炎症性疾病状态,标记了临床健康个体的衰老,跟踪了免疫和非免疫疾病中的疾病活动和治疗反应,并预测了对不同疫苗的免疫接种的年龄相关抗体反应。这种区分能力超出了经典炎症生物标志物 C 反应蛋白和白细胞介素 6。因此,包括衰老在内的各种情况下与健康的偏离都有共同的全身免疫后果,我们提供了一个计算 IHM 的网络平台,可用于其他数据集,从而为精准医学提供支持。