Brasnett Christopher, Kiani Armin, Sami Selim, Otto Sijbren, Marrink Siewert J
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands.
Centre for Systems Chemistry, Stratingh Institute, University of Groningen, 9747 AG, Groningen, The Netherlands.
Commun Chem. 2024 Jul 4;7(1):151. doi: 10.1038/s42004-024-01234-y.
Biomolecular condensates are phase separated systems that play an important role in the spatio-temporal organisation of cells. Their distinct physico-chemical nature offers a unique environment for chemical reactions to occur. The compartmentalisation of chemical reactions is also believed to be central to the development of early life. To demonstrate how molecular dynamics may be used to capture chemical reactions in condensates, here we perform reactive molecular dynamics simulations using the coarse-grained Martini forcefield. We focus on the formation of rings of benzene-1,3-dithiol inside a synthetic peptide-based condensate, and find that the ring size distribution shifts to larger macrocycles compared to when the reaction takes place in an aqueous environment. Moreover, reaction rates are noticeably increased when the peptides simultaneously undergo phase separation, hinting that condensates may act as chaperones in recruiting molecules to reaction hubs.
生物分子凝聚物是相分离系统,在细胞的时空组织中发挥着重要作用。它们独特的物理化学性质为化学反应的发生提供了独特的环境。化学反应的区室化也被认为是早期生命发展的核心。为了证明分子动力学如何用于捕捉凝聚物中的化学反应,我们在此使用粗粒度的马蒂尼力场进行反应性分子动力学模拟。我们关注基于合成肽的凝聚物中苯-1,3-二硫醇环的形成,发现与在水环境中发生反应相比,环尺寸分布向更大的大环转移。此外,当肽同时发生相分离时,反应速率显著增加,这表明凝聚物可能在将分子招募到反应中心时起到伴侣作用。