Wang Liguo, Brasnett Christopher, Borges-Araújo Luís, Souza Paulo C T, Marrink Siewert J
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands.
Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France.
Nat Commun. 2025 Mar 24;16(1):2874. doi: 10.1038/s41467-025-58199-2.
Coarse-grained (CG) molecular dynamics (MD) is widely used for the efficient simulation of intrinsically disordered proteins (IDPs). The Martini model, one of the most popular CG force fields in biomolecular simulation, was reported to yield too compact IDP conformations, limiting its applications. Addressing this, we optimized the bonded parameters based on fitting to reference simulations of a diverse set of IDPs at atomistic resolution, resulting in a Martini3-based disordered protein model coined Martini3-IDP. This model leads to expanded IDP conformations, greatly improving the reproduction of the experimentally measured radii of gyration. Moreover, contrary to ad-hoc fixes based on scaling of protein-protein or protein-water interactions, Martini3-IDP keeps the overall interaction balance underlying Martini 3. To validate that, we perform a comprehensive testing including full-length multidomain proteins, IDP-lipid membrane binding and IDP-small molecule binding, confirming its ability to successfully capture the complex interplay between disordered proteins and diverse biomolecular components. Finally, the recently emerging concept of biomolecular condensate, through liquid-liquid phase separation, was also reproduced by Martini3-IDP for a number of both homotypic and heterotypic systems. With the improved Martini3-IDP model, we expand the ability to simulate processes involving IDPs in complex environments, at spatio-temporal scales inaccessible with all-atom models.
粗粒度(CG)分子动力学(MD)被广泛用于对内在无序蛋白质(IDP)进行高效模拟。据报道,生物分子模拟中最流行的CG力场之一——马天尼模型,会产生过于紧凑的IDP构象,限制了其应用。为了解决这个问题,我们基于对一组不同IDP在原子分辨率下的参考模拟进行拟合,优化了键合参数,从而产生了一种基于马天尼3的无序蛋白质模型,称为马天尼3-IDP。该模型使IDP构象得以扩展,极大地改善了对实验测量的回转半径的再现。此外,与基于蛋白质-蛋白质或蛋白质-水相互作用缩放的临时修正不同,马天尼3-IDP保持了马天尼3的整体相互作用平衡。为了验证这一点,我们进行了全面测试,包括全长多结构域蛋白质、IDP-脂质膜结合和IDP-小分子结合,证实了其成功捕捉无序蛋白质与各种生物分子成分之间复杂相互作用的能力。最后,马天尼3-IDP还针对许多同型和异型系统再现了最近通过液-液相分离出现的生物分子凝聚体概念。借助改进的马天尼3-IDP模型,我们扩展了在复杂环境中模拟涉及IDP的过程的能力,这些过程在全原子模型无法达到的时空尺度上进行。