Suppr超能文献

窄带光对脉络膜厚度和瞳孔的影响。

Effects of Narrowband Light on Choroidal Thickness and the Pupil.

机构信息

University of Houston College of Optometry, Houston, TX 77096, United States.

出版信息

Invest Ophthalmol Vis Sci. 2020 Aug 3;61(10):40. doi: 10.1167/iovs.61.10.40.

Abstract

PURPOSE

To determine the effects of narrowband light exposure on choroidal thickness and the pupil response in humans.

METHODS

Twenty subjects, ages 21 to 43 years, underwent 1 hour of exposure to broadband, short wavelength "blue," or long wavelength "red" light, or darkness. Choroidal thickness, imaged with spectral domain optical coherence tomography, axial length, determined from biometry, and rod/cone- and intrinsically photosensitive retinal ganglion cell-driven pupil responses were measured before and after exposure. Pupil stimuli were six 1 second alternating red (651 nm) and blue (456 nm) stimuli, 60 seconds apart. Pupil metrics included maximum constriction and the 6 second post-illumination pupil response (PIPR).

RESULTS

Compared with before exposure, the choroid significantly thinned after broadband light, red light, and dark exposure (all P < 0.05), but not after blue light exposure (P = 0.39). The maximum constriction to 1 second red stimuli significantly decreased after all light exposures (all P < 0.001), but increased after dark exposure (P = 0.02), compared with before exposure. Maximum constriction and 6-second PIPR to 1 second blue stimuli significantly decreased after all light exposures compared with before exposure (all P < 0.005), with no change after dark exposure (P > 0.05). There were no differences in axial length change or 6-second PIPR to red stimuli between exposures.

CONCLUSIONS

Narrowband blue and red light exposure induced differential changes in choroidal thickness. Maximum constriction, a function of rod/cone activity, and the intrinsically photosensitive retinal ganglion cell-mediated PIPR were attenuated after all light exposures. Findings demonstrate differing effects of short-term narrowband light and dark exposure on the choroid, rod/cone activity, and intrinsically photosensitive retinal ganglion cells.

摘要

目的

确定窄带光暴露对人类脉络膜厚度和瞳孔反应的影响。

方法

20 名年龄在 21 岁至 43 岁之间的受试者接受了 1 小时的宽带、短波长“蓝光”或长波长“红光”或黑暗暴露。使用谱域光学相干断层扫描(OCT)成像测量脉络膜厚度,通过生物测量法确定眼轴长度,并在暴露前后测量棒状细胞/锥状细胞和固有光敏视网膜神经节细胞驱动的瞳孔反应。瞳孔刺激是 6 个 1 秒交替的红光(651nm)和蓝光(456nm)刺激,间隔 60 秒。瞳孔指标包括最大收缩和 6 秒后光照瞳孔反应(PIPR)。

结果

与暴露前相比,宽带光、红光和暗暴露后脉络膜明显变薄(均 P < 0.05),但蓝光暴露后无明显变化(P = 0.39)。与暴露前相比,所有光照暴露后 1 秒红光刺激的最大收缩明显减小(均 P < 0.001),但暗暴露后增加(P = 0.02)。与暴露前相比,所有光照暴露后 1 秒蓝光刺激的最大收缩和 6 秒 PIPR 明显减小(均 P < 0.005),但暗暴露后无明显变化(P > 0.05)。不同光照暴露后,眼轴长度变化或 1 秒红光刺激的 6 秒 PIPR 无差异。

结论

窄带蓝光和红光暴露引起脉络膜厚度的不同变化。与暴露前相比,所有光照暴露后,棒状细胞/锥状细胞活动的最大收缩和固有光敏视网膜神经节细胞介导的 PIPR 均减弱。研究结果表明,短期窄带光和暗暴露对脉络膜、棒状细胞/锥状细胞活动和固有光敏视网膜神经节细胞有不同的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d41/7452857/ede440943b1b/iovs-61-10-40-f001.jpg

相似文献

1
Effects of Narrowband Light on Choroidal Thickness and the Pupil.
Invest Ophthalmol Vis Sci. 2020 Aug 3;61(10):40. doi: 10.1167/iovs.61.10.40.
2
3
The ipRGC-driven pupil response with light exposure and refractive error in children.
Ophthalmic Physiol Opt. 2018 Sep;38(5):503-515. doi: 10.1111/opo.12583. Epub 2018 Sep 26.
4
Post-illumination pupil response after blue light: Reliability of optimized melanopsin-based phototransduction assessment.
Exp Eye Res. 2015 Oct;139:73-80. doi: 10.1016/j.exer.2015.07.010. Epub 2015 Jul 23.
5
Binocular Summation in Postillumination Pupil Response Driven by Melanopsin-Containing Retinal Ganglion Cells.
Invest Ophthalmol Vis Sci. 2018 Oct 1;59(12):4968-4977. doi: 10.1167/iovs.18-24639.
6
The absence of attenuating effect of red light exposure on pre-existing melanopsin-driven post-illumination pupil response.
Vision Res. 2016 Jul;124:59-65. doi: 10.1016/j.visres.2016.06.010. Epub 2016 Jul 6.
7
Rhodopsin and Melanopsin Contributions to the Early Redilation Phase of the Post-Illumination Pupil Response (PIPR).
PLoS One. 2016 Aug 22;11(8):e0161175. doi: 10.1371/journal.pone.0161175. eCollection 2016.
8
Intrinsically photosensitive retinal ganglion cell-driven pupil responses in patients with traumatic brain injury.
Vision Res. 2021 Nov;188:174-183. doi: 10.1016/j.visres.2021.07.007. Epub 2021 Aug 2.
9
Differences in the pupillary responses to evening light between children and adolescents.
J Physiol Anthropol. 2024 Jul 3;43(1):16. doi: 10.1186/s40101-024-00363-6.
10
Post-illumination pupil response in subjects without ocular disease.
Invest Ophthalmol Vis Sci. 2010 May;51(5):2764-9. doi: 10.1167/iovs.09-4717. Epub 2009 Dec 10.

引用本文的文献

1
Effects of Blue Light Toward Emmetropization.
Cureus. 2025 Jul 11;17(7):e87714. doi: 10.7759/cureus.87714. eCollection 2025 Jul.
2
Chromatic imaging properties of myopia control spectacle lenses.
Biomed Opt Express. 2025 Mar 19;16(4):1499-1512. doi: 10.1364/BOE.545932. eCollection 2025 Apr 1.
3
Age-Related Regional Changes in Choroidal Vascularity in Healthy Emmetropic Eyes.
Transl Vis Sci Technol. 2025 May 1;14(5):3. doi: 10.1167/tvst.14.5.3.
4
Controlling ocular longitudinal chromatic aberration using a spatial light modulator.
Biomed Opt Express. 2025 Feb 26;16(3):1240-1253. doi: 10.1364/BOE.545842. eCollection 2025 Mar 1.
5
Peripheral Contrast Reduction Optically Induced by Scattering Lenses Thickens Peripheral Choroid.
Transl Vis Sci Technol. 2024 Oct 1;13(10):32. doi: 10.1167/tvst.13.10.32.
6
The impact of light properties on ocular growth and myopia development.
Taiwan J Ophthalmol. 2024 Jun 21;14(2):143-150. doi: 10.4103/tjo.TJO-D-24-00031. eCollection 2024 Apr-Jun.
7
Increase in choroidal thickness after blue light stimulation of the blind spot in young adults.
Bioelectron Med. 2024 Jun 3;10(1):13. doi: 10.1186/s42234-024-00146-5.
8
Myopia Is an Ischemic Eye Condition: A Review from the Perspective of Choroidal Blood Flow.
J Clin Med. 2024 May 9;13(10):2777. doi: 10.3390/jcm13102777.
9
Influence of Aberration-Free, Narrowband Light on the Choroidal Thickness and Eye Length.
Transl Vis Sci Technol. 2024 Apr 2;13(4):30. doi: 10.1167/tvst.13.4.30.
10
Short-Term Myopic Defocus and Choroidal Thickness in Children and Adults.
Invest Ophthalmol Vis Sci. 2024 Apr 1;65(4):22. doi: 10.1167/iovs.65.4.22.

本文引用的文献

2
Monochromatic and white light and the regulation of eye growth.
Exp Eye Res. 2019 Jul;184:172-182. doi: 10.1016/j.exer.2019.04.020. Epub 2019 Apr 21.
3
Choroidal changes in human myopia: insights from optical coherence tomography imaging.
Clin Exp Optom. 2019 May;102(3):270-285. doi: 10.1111/cxo.12862. Epub 2018 Dec 19.
4
Ocular Biometric Diurnal Rhythms in Emmetropic and Myopic Adults.
Invest Ophthalmol Vis Sci. 2018 Oct 1;59(12):5176-5187. doi: 10.1167/iovs.18-25389.
5
Systematic review of light exposure impact on human circadian rhythm.
Chronobiol Int. 2019 Feb;36(2):151-170. doi: 10.1080/07420528.2018.1527773. Epub 2018 Oct 12.
6
The ipRGC-driven pupil response with light exposure and refractive error in children.
Ophthalmic Physiol Opt. 2018 Sep;38(5):503-515. doi: 10.1111/opo.12583. Epub 2018 Sep 26.
7
Juvenile Tree Shrews Do Not Maintain Emmetropia in Narrow-band Blue Light.
Optom Vis Sci. 2018 Oct;95(10):911-920. doi: 10.1097/OPX.0000000000001283.
8
Narrow-band, long-wavelength lighting promotes hyperopia and retards vision-induced myopia in infant rhesus monkeys.
Exp Eye Res. 2018 Nov;176:147-160. doi: 10.1016/j.exer.2018.07.004. Epub 2018 Jul 4.
10
Circadian rhythms, refractive development, and myopia.
Ophthalmic Physiol Opt. 2018 May;38(3):217-245. doi: 10.1111/opo.12453.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验