Luo Weifan, Kim SunJu, Lempesis Nikolaos, Merten Lena, Kneschaurek Ekaterina, Dankl Mathias, Carnevali Virginia, Agosta Lorenzo, Slama Vladislav, VanOrman Zachary, Siczek Miłosz, Bury Wojciech, Gallant Benjamin, Kubicki Dominik J, Zalibera Michal, Piveteau Laura, Deconinck Marielle, Guerrero-León L Andrés, Frei Aaron T, Gaina Patricia A, Carteau Eva, Zimmermann Paul, Hinderhofer Alexander, Schreiber Frank, Moser Jacques-E, Vaynzof Yana, Feldmann Sascha, Seo Ji-Youn, Rothlisberger Ursula, Milić Jovana V
Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland.
Department of Nanoenergy Engineering, Pusan National University, Busan, 46241, South Korea.
Adv Sci (Weinh). 2024 Aug;11(32):e2405622. doi: 10.1002/advs.202405622. Epub 2024 Jul 3.
The stability of hybrid organic-inorganic halide perovskite semiconductors remains a significant obstacle to their application in photovoltaics. To this end, the use of low-dimensional (LD) perovskites, which incorporate hydrophobic organic moieties, provides an effective strategy to improve their stability, yet often at the expense of their performance. To address this limitation, supramolecular engineering of noncovalent interactions between organic and inorganic components has shown potential by relying on hydrogen bonding and conventional van der Waals interactions. Here, the capacity to access novel LD perovskite structures that uniquely assemble through unorthodox S-mediated interactions is explored by incorporating benzothiadiazole-based moieties. The formation of S-mediated LD structures is demonstrated, including one-dimensional (1D) and layered two-dimensional (2D) perovskite phases assembled via chalcogen bonding and S-π interactions. This involved a combination of techniques, such as single crystal and thin film X-ray diffraction, as well as solid-state NMR spectroscopy, complemented by molecular dynamics simulations, density functional theory calculations, and optoelectronic characterization, revealing superior conductivities of S-mediated LD perovskites. The resulting materials are applied in n-i-p and p-i-n perovskite solar cells, demonstrating enhancements in performance and operational stability that reveal a versatile supramolecular strategy in photovoltaics.
有机-无机卤化物杂化钙钛矿半导体的稳定性仍然是其在光伏领域应用的一个重大障碍。为此,使用包含疏水性有机部分的低维(LD)钙钛矿提供了一种提高其稳定性的有效策略,但往往以牺牲其性能为代价。为了解决这一限制,有机和无机组分之间非共价相互作用的超分子工程通过依赖氢键和传统范德华相互作用显示出了潜力。在此,通过引入基于苯并噻二唑的部分,探索了获得通过非传统S介导相互作用独特组装的新型LD钙钛矿结构的能力。证明了S介导的LD结构的形成,包括通过硫族键合和S-π相互作用组装的一维(1D)和层状二维(2D)钙钛矿相。这涉及多种技术的结合,如单晶和薄膜X射线衍射以及固态核磁共振光谱,并辅以分子动力学模拟、密度泛函理论计算和光电表征,揭示了S介导的LD钙钛矿具有优异的导电性。所得材料应用于n-i-p和p-i-n钙钛矿太阳能电池,显示出性能和运行稳定性的提高,揭示了光伏领域一种通用的超分子策略。