Suppr超能文献

S-腺苷甲硫氨酸可用性的改变会影响酿酒酵母中的 dNTP 池。

Altered S-AdenosylMethionine availability impacts dNTP pools in Saccharomyces cerevisiae.

机构信息

Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky, USA.

出版信息

Yeast. 2024 Aug;41(8):513-524. doi: 10.1002/yea.3973. Epub 2024 Jul 3.

Abstract

Saccharomyces cerevisiae has long been used as a model organism to study genome instability. The SAM1 and SAM2 genes encode AdoMet synthetases, which generate S-AdenosylMethionine (AdoMet) from Methionine (Met) and ATP. Previous work from our group has shown that deletions of the SAM1 and SAM2 genes cause changes to AdoMet levels and impact genome instability in opposite manners. AdoMet is a key product of methionine metabolism and the major methyl donor for methylation events of proteins, RNAs, small molecules, and lipids. The methyl cycle is interrelated to the folate cycle which is involved in de novo synthesis of purine and pyrimidine deoxyribonucleotides (dATP, dTTP, dCTP, and dGTP). AdoMet also plays a role in polyamine production, essential for cell growth and used in detoxification of reactive oxygen species (ROS) and maintenance of the redox status in cells. This is also impacted by the methyl cycle's role in production of glutathione, another ROS scavenger and cellular protectant. We show here that sam2∆/sam2∆ cells, previously characterized with lower levels of AdoMet and higher genome instability, have a higher level of each dNTP (except dTTP), contributing to a higher overall dNTP pool level when compared to wildtype. Unchecked, these increased levels can lead to multiple types of DNA damage which could account for the genome instability increases in these cells.

摘要

酿酒酵母长期以来一直被用作研究基因组不稳定性的模式生物。SAM1 和 SAM2 基因编码 AdoMet 合酶,它将蛋氨酸(Met)和 ATP 转化为 S-腺苷甲硫氨酸(AdoMet)。我们小组之前的工作表明,SAM1 和 SAM2 基因的缺失会导致 AdoMet 水平的变化,并以相反的方式影响基因组不稳定性。AdoMet 是蛋氨酸代谢的关键产物,也是蛋白质、RNA、小分子和脂质甲基化事件的主要甲基供体。甲基循环与叶酸循环相关联,叶酸循环参与嘌呤和嘧啶脱氧核糖核苷酸(dATP、dTTP、dCTP 和 dGTP)的从头合成。AdoMet 还在多胺的产生中发挥作用,多胺对细胞生长至关重要,用于清除活性氧(ROS)并维持细胞的氧化还原状态。这也受到甲基循环在产生谷胱甘肽中的作用的影响,谷胱甘肽是另一种 ROS 清除剂和细胞保护剂。我们在这里表明,以前被表征为 AdoMet 水平较低和基因组不稳定性较高的 sam2∆/sam2∆ 细胞,每种 dNTP(除 dTTP 外)的水平都较高,与野生型相比,整体 dNTP 池水平更高。如果不加控制,这些增加的水平可能会导致多种类型的 DNA 损伤,这可能是这些细胞基因组不稳定性增加的原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验