Suppr超能文献

一种基于选择的下一代测序方法,用于在酿酒酵母中开发稳健的、基因型特异性的突变谱。

A selection-based next generation sequencing approach to develop robust, genotype-specific mutation profiles in Saccharomyces cerevisiae.

机构信息

Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY 14203, USA.

University at Buffalo Genomics and Bioinformatics Core, Buffalo, NY 14203, USA.

出版信息

G3 (Bethesda). 2021 Jun 17;11(6). doi: 10.1093/g3journal/jkab099.

Abstract

Distinct mutation signatures arise from environmental exposures and/or from defects in metabolic pathways that promote genome stability. The presence of a particular mutation signature can therefore predict the underlying mechanism of mutagenesis. These insults to the genome often alter dNTP pools, which itself impacts replication fidelity. Therefore, the impact of altered dNTP pools should be considered when making mechanistic predictions based on mutation signatures. We developed a targeted deep-sequencing approach on the CAN1 gene in Saccharomyces cerevisiae to define information-rich mutational profiles associated with distinct rnr1 backgrounds. Mutations in the activity and selectivity sites of rnr1 lead to elevated and/or unbalanced dNTP levels, which compromises replication fidelity and increases mutation rates. The mutation spectra of rnr1Y285F and rnr1Y285A alleles were characterized previously; our analysis was consistent with this prior work but the sequencing depth achieved in our study allowed a significantly more robust and nuanced computational analysis of the variants observed, generating profiles that integrated information about mutation spectra, position effects, and sequence context. This approach revealed previously unidentified, genotype-specific mutation profiles in the presence of even modest changes in dNTP pools. Furthermore, we identified broader sequence contexts and nucleotide motifs that influenced variant profiles in different rnr1 backgrounds, which allowed specific mechanistic predictions about the impact of altered dNTP pools on replication fidelity.

摘要

不同的突变特征源自环境暴露和/或促进基因组稳定性的代谢途径缺陷。因此,特定突变特征的存在可以预测诱变的潜在机制。这些对基因组的损伤通常会改变 dNTP 池,从而影响复制保真度。因此,在基于突变特征进行机制预测时,应该考虑改变的 dNTP 池的影响。我们在酿酒酵母的 CAN1 基因上开发了一种靶向深度测序方法,以定义与不同 rnr1 背景相关的信息丰富的突变特征。rnr1 活性和选择性位点的突变导致 dNTP 水平升高和/或失衡,从而损害复制保真度并增加突变率。rnr1Y285F 和 rnr1Y285A 等位基因的突变谱先前已被表征;我们的分析与之前的工作一致,但我们研究中实现的测序深度允许对观察到的变体进行更稳健和细致的计算分析,生成了整合有关突变谱、位置效应和序列上下文的信息的图谱。这种方法在 dNTP 池发生甚至适度变化的情况下,揭示了先前未被识别的、与基因型特异性相关的突变特征。此外,我们确定了更广泛的序列上下文和核苷酸基序,它们影响不同 rnr1 背景下的变体图谱,从而可以对改变的 dNTP 池对复制保真度的影响做出特定的机制预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a31/8495734/d4e451e8f3a2/jkab099f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验