School of Psychological and Cognitive Sciences, Peking University, Beijing, China.
Beijing Key Laboratory of Behavior and Mental Health, Beijing, China.
Elife. 2024 Jul 4;13:RP94608. doi: 10.7554/eLife.94608.
The sensorimotor system can recalibrate itself without our conscious awareness, a type of procedural learning whose computational mechanism remains undefined. Recent findings on implicit motor adaptation, such as over-learning from small perturbations and fast saturation for increasing perturbation size, challenge existing theories based on sensory errors. We argue that perceptual error, arising from the optimal combination of movement-related cues, is the primary driver of implicit adaptation. Central to our theory is the increasing sensory uncertainty of visual cues with increasing perturbations, which was validated through perceptual psychophysics (Experiment 1). Our theory predicts the learning dynamics of implicit adaptation across a spectrum of perturbation sizes on a trial-by-trial basis (Experiment 2). It explains proprioception changes and their relation to visual perturbation (Experiment 3). By modulating visual uncertainty in perturbation, we induced unique adaptation responses in line with our model predictions (Experiment 4). Overall, our perceptual error framework outperforms existing models based on sensory errors, suggesting that perceptual error in locating one's effector, supported by Bayesian cue integration, underpins the sensorimotor system's implicit adaptation.
感觉运动系统可以在我们无意识的情况下自我重新校准,这是一种程序性学习,其计算机制尚未确定。最近关于内隐运动适应的发现,例如从小的扰动中过度学习和随着扰动大小的增加而快速饱和,挑战了基于感觉错误的现有理论。我们认为,运动相关线索的最佳组合产生的感知错误是内隐适应的主要驱动因素。我们理论的核心是视觉线索的感知不确定性随着扰动的增加而增加,这通过感知心理物理学(实验 1)得到了验证。我们的理论预测了在逐个试验的基础上,各种大小的扰动下内隐适应的学习动态(实验 2)。它解释了本体感受的变化及其与视觉扰动的关系(实验 3)。通过调节扰动中的视觉不确定性,我们诱导出与我们的模型预测一致的独特适应反应(实验 4)。总的来说,我们的感知错误框架优于基于感觉错误的现有模型,这表明基于贝叶斯线索整合的定位效应器的感知错误是感觉运动系统内隐适应的基础。