Suppr超能文献

在隐性运动学习过程中,感觉预测误差和任务误差之间的相互作用。

Interactions between sensory prediction error and task error during implicit motor learning.

机构信息

Department of Psychology, University of California, Berkeley, California, United States of America.

Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America.

出版信息

PLoS Comput Biol. 2022 Mar 23;18(3):e1010005. doi: 10.1371/journal.pcbi.1010005. eCollection 2022 Mar.

Abstract

Implicit motor recalibration allows us to flexibly move in novel and changing environments. Conventionally, implicit recalibration is thought to be driven by errors in predicting the sensory outcome of movement (i.e., sensory prediction errors). However, recent studies have shown that implicit recalibration is also influenced by errors in achieving the movement goal (i.e., task errors). Exactly how sensory prediction errors and task errors interact to drive implicit recalibration and, in particular, whether task errors alone might be sufficient to drive implicit recalibration remain unknown. To test this, we induced task errors in the absence of sensory prediction errors by displacing the target mid-movement. We found that task errors alone failed to induce implicit recalibration. In additional experiments, we simultaneously varied the size of sensory prediction errors and task errors. We found that implicit recalibration driven by sensory prediction errors could be continuously modulated by task errors, revealing an unappreciated dependency between these two sources of error. Moreover, implicit recalibration was attenuated when the target was simply flickered in its original location, even though this manipulation did not affect task error - an effect likely attributed to attention being directed away from the feedback cursor. Taken as a whole, the results were accounted for by a computational model in which sensory prediction errors and task errors, modulated by attention, interact to determine the extent of implicit recalibration.

摘要

内隐运动再校准使我们能够在新颖和不断变化的环境中灵活移动。传统上,内隐再校准被认为是由预测运动感觉结果的误差驱动的(即感觉预测误差)。然而,最近的研究表明,内隐再校准也受到实现运动目标的误差的影响(即任务误差)。感觉预测误差和任务误差如何相互作用以驱动内隐再校准,特别是仅任务误差是否足以驱动内隐再校准,目前尚不清楚。为了测试这一点,我们在没有感觉预测误差的情况下通过在运动中途移动目标来产生任务误差。我们发现,仅任务误差不足以引起内隐再校准。在额外的实验中,我们同时改变了感觉预测误差和任务误差的大小。我们发现,由感觉预测误差驱动的内隐再校准可以被任务误差连续调节,揭示了这两种误差源之间的一种未被认识到的依赖性。此外,即使这种操作不影响任务误差,目标仅仅在其原始位置闪烁也会削弱内隐再校准——这种效应可能归因于注意力从反馈光标上转移开。总的来说,这些结果可以用一个计算模型来解释,该模型认为感觉预测误差和任务误差通过注意力来调节,从而决定内隐再校准的程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fced/8979451/92fa5fa45d9e/pcbi.1010005.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验