偶发误差及其对检验变量间关系和综合测量结果的影响。
Adventitious Error and Its Implications for Testing Relations Between Variables and for Composite Measurement Outcomes.
机构信息
Department of Psychology, The Ohio State University, 1827 Neil Avenue, Columbus, OH, 43210, USA.
出版信息
Psychometrika. 2024 Sep;89(3):1055-1073. doi: 10.1007/s11336-024-09980-7. Epub 2024 Jul 4.
Wu and Browne (Psychometrika 80(3):571-600, 2015. https://doi.org/10.1007/s11336-015-9451-3 ; henceforth W &B) introduced the notion of adventitious error to explicitly take into account approximate goodness of fit of covariance structure models (CSMs). Adventitious error supposes that observed covariance matrices are not directly sampled from a theoretical population covariance matrix but from an operational population covariance matrix. This operational matrix is randomly distorted from the theoretical matrix due to differences in study implementations. W &B showed how adventitious error is linked to the root mean square error of approximation (RMSEA) and how the standard errors (SEs) of parameter estimates are augmented. Our contribution is to consider adventitious error as a general phenomenon and to illustrate its consequences. Using simulations, we illustrate that its impact on SEs can be generalized to pairwise relations between variables beyond the CSM context. Using derivations, we conjecture that heterogeneity of effect sizes across studies and overestimation of statistical power can both be interpreted as stemming from adventitious error. We also show that adventitious error, if it occurs, has an impact on the uncertainty of composite measurement outcomes such as factor scores and summed scores. The results of a simulation study show that the impact on measurement uncertainty is rather small although larger for factor scores than for summed scores. Adventitious error is an assumption about the data generating mechanism; the notion offers a statistical framework for understanding a broad range of phenomena, including approximate fit, varying research findings, heterogeneity of effects, and overestimates of power.
吴和布朗(Wu and Browne)(心理计量学 80(3):571-600,2015 年。https://doi.org/10.1007/s11336-015-9451-3;以下简称 W&B)引入了偶然误差的概念,以明确考虑协方差结构模型(CSM)的近似拟合优度。偶然误差假设观察到的协方差矩阵不是直接从理论总体协方差矩阵中抽样得到的,而是从操作总体协方差矩阵中抽样得到的。由于研究实施的差异,这个操作矩阵会随机偏离理论矩阵。W&B 展示了偶然误差如何与近似均方根误差(RMSEA)联系起来,以及参数估计的标准误差(SE)如何增加。我们的贡献是将偶然误差视为一种普遍现象,并说明其后果。通过模拟,我们说明其对 SE 的影响可以推广到 CSM 背景之外变量之间的成对关系。通过推导,我们推测研究之间的效应大小的异质性和统计功效的高估都可以解释为源自偶然误差。我们还表明,如果偶然误差发生,它会对复合测量结果(如因子分数和总和分数)的不确定性产生影响。模拟研究的结果表明,尽管对因子分数的影响大于对总和分数的影响,但对测量不确定性的影响相当小。偶然误差是对数据生成机制的一种假设;这个概念为理解广泛的现象提供了一个统计框架,包括近似拟合、不同的研究结果、效应的异质性和功效的高估。