Suppr超能文献

使用未加权近似误差度量进行模型拟合评估的优势。

Advantages of Using Unweighted Approximation Error Measures for Model Fit Assessment.

机构信息

Section for Psychological Methods, Department of Psychology, Brandenburg Medical School Theodor Fontane, Am Alten Gymnasium 1-3, 16816,  Neuruppin, Germany.

出版信息

Psychometrika. 2023 Jun;88(2):413-433. doi: 10.1007/s11336-023-09909-6. Epub 2023 Apr 18.

Abstract

Fit indices are highly frequently used for assessing the goodness of fit of latent variable models. Most prominent fit indices, such as the root-mean-square error of approximation (RMSEA) or the comparative fit index (CFI), are based on a noncentrality parameter estimate derived from the model fit statistic. While a noncentrality parameter estimate is well suited for quantifying the amount of systematic error, the complex weighting function involved in its calculation makes indices derived from it challenging to interpret. Moreover, noncentrality-parameter-based fit indices yield systematically different values, depending on the indicators' level of measurement. For instance, RMSEA and CFI yield more favorable fit indices for models with categorical as compared to metric variables under otherwise identical conditions. In the present article, approaches for obtaining an approximation discrepancy estimate that is independent from any specific weighting function are considered. From these unweighted approximation error estimates, fit indices analogous to RMSEA and CFI are calculated and their finite sample properties are investigated using simulation studies. The results illustrate that the new fit indices consistently estimate their true value which, in contrast to other fit indices, is the same value for metric and categorical variables. Advantages with respect to interpretability are discussed and cutoff criteria for the new indices are considered.

摘要

拟合指数被广泛用于评估潜在变量模型的拟合优度。最著名的拟合指数,如近似均方根误差 (RMSEA) 或比较拟合指数 (CFI),都是基于从模型拟合统计量中得出的非中心参数估计值。虽然非中心参数估计值非常适合量化系统误差的程度,但由于其计算涉及到复杂的加权函数,因此基于该参数的指数在解释上具有一定的挑战性。此外,非中心参数拟合指数的取值会因指标的测量水平而系统地不同。例如,在其他条件相同的情况下,对于具有类别变量的模型,RMSEA 和 CFI 会产生比具有度量变量的模型更有利的拟合指数。在本文中,考虑了一种获得与任何特定加权函数无关的近似差异估计的方法。从这些无权重的近似误差估计中,计算出类似于 RMSEA 和 CFI 的拟合指数,并通过模拟研究来研究它们的有限样本特性。结果表明,新的拟合指数始终能够估计其真实值,与其他拟合指数不同的是,该真实值对于度量和类别变量是相同的。还讨论了新指数在可解释性方面的优势,并考虑了新指数的临界值标准。

相似文献

6
The Effect of Estimation Methods on SEM Fit Indices.估计方法对结构方程模型拟合指数的影响。
Educ Psychol Meas. 2020 Jun;80(3):421-445. doi: 10.1177/0013164419885164. Epub 2019 Nov 10.
7
Understanding the Model Size Effect on SEM Fit Indices.理解模型大小对结构方程模型拟合指数的影响。
Educ Psychol Meas. 2019 Apr;79(2):310-334. doi: 10.1177/0013164418783530. Epub 2018 Jun 29.

本文引用的文献

1
The Effect of Estimation Methods on SEM Fit Indices.估计方法对结构方程模型拟合指数的影响。
Educ Psychol Meas. 2020 Jun;80(3):421-445. doi: 10.1177/0013164419885164. Epub 2019 Nov 10.
2
Improving Fit Indices in Structural Equation Modeling with Categorical Data.改善结构方程模型中类别数据的适配指数。
Multivariate Behav Res. 2021 May-Jun;56(3):390-407. doi: 10.1080/00273171.2020.1717922. Epub 2020 Feb 13.
4
Fit Indices Versus Test Statistics.适应指数与检验统计量。
Multivariate Behav Res. 2005 Jan 1;40(1):115-48. doi: 10.1207/s15327906mbr4001_5.
5
Assessing Approximate Fit in Categorical Data Analysis.评估分类数据分析中的近似拟合度。
Multivariate Behav Res. 2014 Jul-Aug;49(4):305-28. doi: 10.1080/00273171.2014.911075.
7
Comparative fit indexes in structural models.结构模型中的比较拟合指数。
Psychol Bull. 1990 Mar;107(2):238-46. doi: 10.1037/0033-2909.107.2.238.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验