文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

应用放射组学于 PET 成像的挑战与限制:研究的可能机会与途径。

Challenges and limitations in applying radiomics to PET imaging: Possible opportunities and avenues for research.

机构信息

Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy.

出版信息

Comput Biol Med. 2024 Sep;179:108827. doi: 10.1016/j.compbiomed.2024.108827. Epub 2024 Jul 3.


DOI:10.1016/j.compbiomed.2024.108827
PMID:38964244
Abstract

Radiomics, the high-throughput extraction of quantitative imaging features from medical images, holds immense potential for advancing precision medicine in oncology and beyond. While radiomics applied to positron emission tomography (PET) imaging offers unique insights into tumor biology and treatment response, it is imperative to elucidate the challenges and constraints inherent in this domain to facilitate their translation into clinical practice. This review examines the challenges and limitations of applying radiomics to PET imaging, synthesizing findings from the last five years (2019-2023) and highlights the significance of addressing these challenges to realize the full clinical potential of radiomics in oncology and molecular imaging. A comprehensive search was conducted across multiple electronic databases, including PubMed, Scopus, and Web of Science, using keywords relevant to radiomics issues in PET imaging. Only studies published in peer-reviewed journals were eligible for inclusion in this review. Although many studies have highlighted the potential of radiomics in predicting treatment response, assessing tumor heterogeneity, enabling risk stratification, and personalized therapy selection, various challenges regarding the practical implementation of the proposed models still need to be addressed. This review illustrates the challenges and limitations of radiomics in PET imaging across various cancer types, encompassing both phantom and clinical investigations. The analyzed studies highlight the importance of reproducible segmentation methods, standardized pre-processing and post-processing methodologies, and the need to create large multicenter studies registered in a centralized database to promote the continuous validation and clinical integration of radiomics into PET imaging.

摘要

放射组学是从医学图像中提取高通量定量成像特征的方法,在肿瘤学及其他领域的精准医学中具有巨大的潜力。虽然放射组学在正电子发射断层扫描(PET)成像中的应用为肿瘤生物学和治疗反应提供了独特的见解,但阐明该领域固有的挑战和限制对于促进其转化为临床实践至关重要。这篇综述考察了将放射组学应用于 PET 成像所面临的挑战和局限性,综合了过去五年(2019-2023 年)的研究结果,并强调了解决这些挑战的重要性,以实现放射组学在肿瘤学和分子成像中的全部临床潜力。我们在多个电子数据库(包括 PubMed、Scopus 和 Web of Science)中使用与 PET 成像中的放射组学问题相关的关键词进行了全面搜索。只有发表在同行评议期刊上的研究才符合本综述的纳入标准。尽管许多研究强调了放射组学在预测治疗反应、评估肿瘤异质性、实现风险分层和个性化治疗选择方面的潜力,但关于所提出模型的实际应用仍然存在各种挑战。本综述说明了放射组学在各种癌症类型的 PET 成像中的挑战和局限性,包括体模和临床研究。分析后的研究强调了使用可重复的分割方法、标准化的预处理和后处理方法以及创建在集中式数据库中注册的大型多中心研究的重要性,以促进放射组学在 PET 成像中的不断验证和临床整合。

相似文献

[1]
Challenges and limitations in applying radiomics to PET imaging: Possible opportunities and avenues for research.

Comput Biol Med. 2024-9

[2]
Eliciting adverse effects data from participants in clinical trials.

Cochrane Database Syst Rev. 2018-1-16

[3]
Wood Waste Valorization and Classification Approaches: A systematic review.

Open Res Eur. 2025-5-6

[4]
Organomics: A Concept Reflecting the Importance of PET/CT Healthy Organ Radiomics in Non-Small Cell Lung Cancer Prognosis Prediction Using Machine Learning.

Clin Nucl Med. 2024-10-1

[5]
Response prediction for neoadjuvant treatment in locally advanced rectal cancer patients-improvement in decision-making: A systematic review.

Eur J Surg Oncol. 2024-11-15

[6]
18F PET with flutemetamol for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI).

Cochrane Database Syst Rev. 2017-11-22

[7]
Home treatment for mental health problems: a systematic review.

Health Technol Assess. 2001

[8]
Radiomics and deep learning characterisation of liver malignancies in CT images - A systematic review.

Comput Biol Med. 2025-8

[9]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

[10]
18F PET with florbetapir for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI).

Cochrane Database Syst Rev. 2017-11-22

引用本文的文献

[1]
Immunotherapy biomarkers in brain metastases: insights into tumor microenvironment dynamics.

Front Immunol. 2025-8-13

[2]
Tumor-specific PET tracer imaging and contrast-enhanced Mri based tumor volume differences inspection of glioblastoma patients.

Sci Rep. 2025-8-16

[3]
Radiomics-based machine-learning method to predict extrahepatic metastasis in hepatocellular carcinoma after hepatectomy: a multicenter study.

Sci Rep. 2025-8-14

[4]
Global research trends and hotspots in prognostic prediction models for pancreatic cancer: a bibliometric analysis.

Front Oncol. 2025-7-10

[5]
Impact of Field-of-view Zooming and Segmentation Batches on Radiomics Features Reproducibility and Machine Learning Performance in Thyroid Scintigraphy.

Clin Nucl Med. 2025-8-1

[6]
Advancements in deep learning for early diagnosis of Alzheimer's disease using multimodal neuroimaging: challenges and future directions.

Front Neuroinform. 2025-5-2

[7]
Biopsy image-based deep learning for predicting pathologic response to neoadjuvant chemotherapy in patients with NSCLC.

NPJ Precis Oncol. 2025-5-7

[8]
Comparative Evaluation of Machine Learning-Based Radiomics and Deep Learning for Breast Lesion Classification in Mammography.

Diagnostics (Basel). 2025-4-9

[9]
The influence of image selection and segmentation on the extraction of lung cancer imaging radiomics features using 3D-Slicer software.

BMC Cancer. 2025-4-17

[10]
Radiomics in Dermatological Optical Coherence Tomography (OCT): Feature Repeatability, Reproducibility, and Integration into Diagnostic Models in a Prospective Study.

Cancers (Basel). 2025-2-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索