Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy.
Comput Biol Med. 2024 Sep;179:108827. doi: 10.1016/j.compbiomed.2024.108827. Epub 2024 Jul 3.
Radiomics, the high-throughput extraction of quantitative imaging features from medical images, holds immense potential for advancing precision medicine in oncology and beyond. While radiomics applied to positron emission tomography (PET) imaging offers unique insights into tumor biology and treatment response, it is imperative to elucidate the challenges and constraints inherent in this domain to facilitate their translation into clinical practice. This review examines the challenges and limitations of applying radiomics to PET imaging, synthesizing findings from the last five years (2019-2023) and highlights the significance of addressing these challenges to realize the full clinical potential of radiomics in oncology and molecular imaging. A comprehensive search was conducted across multiple electronic databases, including PubMed, Scopus, and Web of Science, using keywords relevant to radiomics issues in PET imaging. Only studies published in peer-reviewed journals were eligible for inclusion in this review. Although many studies have highlighted the potential of radiomics in predicting treatment response, assessing tumor heterogeneity, enabling risk stratification, and personalized therapy selection, various challenges regarding the practical implementation of the proposed models still need to be addressed. This review illustrates the challenges and limitations of radiomics in PET imaging across various cancer types, encompassing both phantom and clinical investigations. The analyzed studies highlight the importance of reproducible segmentation methods, standardized pre-processing and post-processing methodologies, and the need to create large multicenter studies registered in a centralized database to promote the continuous validation and clinical integration of radiomics into PET imaging.
放射组学是从医学图像中提取高通量定量成像特征的方法,在肿瘤学及其他领域的精准医学中具有巨大的潜力。虽然放射组学在正电子发射断层扫描(PET)成像中的应用为肿瘤生物学和治疗反应提供了独特的见解,但阐明该领域固有的挑战和限制对于促进其转化为临床实践至关重要。这篇综述考察了将放射组学应用于 PET 成像所面临的挑战和局限性,综合了过去五年(2019-2023 年)的研究结果,并强调了解决这些挑战的重要性,以实现放射组学在肿瘤学和分子成像中的全部临床潜力。我们在多个电子数据库(包括 PubMed、Scopus 和 Web of Science)中使用与 PET 成像中的放射组学问题相关的关键词进行了全面搜索。只有发表在同行评议期刊上的研究才符合本综述的纳入标准。尽管许多研究强调了放射组学在预测治疗反应、评估肿瘤异质性、实现风险分层和个性化治疗选择方面的潜力,但关于所提出模型的实际应用仍然存在各种挑战。本综述说明了放射组学在各种癌症类型的 PET 成像中的挑战和局限性,包括体模和临床研究。分析后的研究强调了使用可重复的分割方法、标准化的预处理和后处理方法以及创建在集中式数据库中注册的大型多中心研究的重要性,以促进放射组学在 PET 成像中的不断验证和临床整合。
Cochrane Database Syst Rev. 2018-1-16
Open Res Eur. 2025-5-6
Cochrane Database Syst Rev. 2017-11-22
Health Technol Assess. 2001
Cochrane Database Syst Rev. 2018-1-22
Cochrane Database Syst Rev. 2017-11-22
Front Immunol. 2025-8-13