Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, USA.
Environ Res. 2024 Oct 15;259:119512. doi: 10.1016/j.envres.2024.119512. Epub 2024 Jul 2.
Valid, high-resolution estimates of population-level exposure to air pollutants are necessary for accurate estimation of the association between air pollution and the occurrence or exacerbation of adverse health outcomes such as Chronic Obstructive Pulmonary Disease (COPD).
We produced fine-scale individual-level estimates of ambient concentrations of multiple air pollutants (fine particulate matter [PM], NO, NO, and O) at residences of participants in the Subpopulations and Intermediate Outcomes in COPD Air Pollution (SPIROMICS Air) study, located in seven regions in the US. For PM, we additionally integrated modeled estimates of particulate infiltration based on home characteristics and measured total indoor concentrations to provide comprehensive estimates of exposure levels.
To estimate ambient concentrations, we used a hierarchical high-resolution spatiotemporal model that integrates hundreds of geographic covariates and pollutant measurements from regulatory and study-specific monitors, including ones located at participant residences. We modeled infiltration efficiency based on data on house characteristics, home heating and cooling practices, indoor smoke and combustion sources, meteorological factors, and paired indoor-outdoor pollutant measurements, among other indicators.
Cross-validated prediction accuracy (R) for models of ambient concentrations was above 0.80 for most regions and pollutants. Particulate matter infiltration efficiency varied by region, from 0.51 in Winston-Salem to 0.72 in Los Angeles, and ambient-source particles constituted a substantial fraction of total indoor PM.
Leveraging well-validated fine-scale approaches for estimating outdoor, ambient-source indoor, and total indoor pollutant concentrations, we can provide comprehensive estimates of short and long-term exposure levels for cohorts undergoing follow-up in multiple different regions.
为了准确评估空气污染与慢性阻塞性肺疾病(COPD)等不良健康结果发生或恶化之间的关联,需要对人群水平暴露于空气污染物进行有效、高分辨率的估计。
我们为 COPD 空气污染中的亚人群和中间结果(SPIROMICS Air)研究参与者的居住地中的多种空气污染物(细颗粒物[PM]、NO、NO 和 O)生成了精细的个体水平的环境浓度估计值,该研究位于美国的七个地区。对于 PM,我们还结合了基于家庭特征的模型估算的颗粒物渗透,以及测量的总室内浓度,以提供全面的暴露水平估算值。
为了估算环境浓度,我们使用了一个层次化的高分辨率时空模型,该模型整合了数百个地理协变量和来自监管机构和研究专用监测器的污染物测量值,包括位于参与者居住地的监测器。我们基于房屋特征、家庭取暖和冷却实践、室内烟雾和燃烧源、气象因素以及室内外污染物测量值等其他指标的数据,对渗透效率进行建模。
对于大多数地区和污染物,环境浓度模型的交叉验证预测准确性(R)都在 0.80 以上。颗粒物渗透效率因地区而异,从温斯顿-塞勒姆的 0.51 到洛杉矶的 0.72,并且环境源颗粒构成了总室内 PM 的很大一部分。
利用经过充分验证的精细尺度方法来估算室外、环境源室内和总室内污染物浓度,我们可以为在多个不同地区进行随访的队列提供短期和长期暴露水平的综合估计值。