Lindström Johan, Szpiro Adam A, Sampson Paul D, Oron Assaf P, Richards Mark, Larson Tim V, Sheppard Lianne
University of Washington, Seattle, USA. Lund University, Lund, Sweden.
University of Washington, Seattle, USA.
Environ Ecol Stat. 2014 Sep;21(3):411-433. doi: 10.1007/s10651-013-0261-4.
The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implemented in an R package, SpatioTemporal, available on CRAN. The model is used by the EPA funded Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) to produce estimates of ambient air pollution; MESA Air uses the estimates to investigate the relationship between chronic exposure to air pollution and cardiovascular disease. In this paper we use the model to predict long-term average concentrations of NO in the Los Angeles area during a ten year period. Predictions are based on measurements from the EPA Air Quality System, MESA Air specific monitoring, and output from a source dispersion model for traffic related air pollution (Caline3QHCR). Accuracy in predicting long-term average concentrations is evaluated using an elaborate cross-validation setup that accounts for a sparse spatio-temporal sampling pattern in the data, and adjusts for temporal effects. The predictive ability of the model is good with cross-validated of approximately 0.7 at subject sites. Replacing four geographic covariate indicators of traffic density with the Caline3QHCR dispersion model output resulted in very similar prediction accuracy from a more parsimonious and more interpretable model. Adding traffic-related geographic covariates to the model that included Caline3QHCR did not further improve the prediction accuracy.
开发能够在小空间尺度上提供准确的时空预测环境空气污染的模型,对于评估空气污染对健康的潜在影响非常重要。在此,我们提出了一个时空框架,该框架通过将来自几个不同监测网络的数据、确定性空气污染模型与地理信息系统(GIS)协变量相结合来预测环境空气污染。本文提出的模型已在R包SpatioTemporal中实现,该包可在CRAN上获取。美国环境保护局(EPA)资助的多族裔动脉粥样硬化与空气污染研究(MESA Air)使用该模型来生成环境空气污染的估计值;MESA Air利用这些估计值来研究长期接触空气污染与心血管疾病之间的关系。在本文中,我们使用该模型来预测洛杉矶地区十年期间一氧化氮(NO)的长期平均浓度。预测基于美国环境保护局空气质量系统的数据测量、MESA Air特定监测以及交通相关空气污染源扩散模型(Caline3QHCR)的输出。使用精心设计的交叉验证设置来评估预测长期平均浓度的准确性,该设置考虑了数据中稀疏的时空采样模式,并对时间效应进行了调整。该模型的预测能力良好,在各站点交叉验证的 约为0.7。用Caline3QHCR扩散模型输出替换交通密度的四个地理协变量指标,从一个更简洁且更具可解释性的模型得到了非常相似的预测准确性。将与交通相关的地理协变量添加到包含Caline3QHCR的模型中并没有进一步提高预测准确性。