Suppr超能文献

一种具有空间和时空协变量的空气污染灵活时空模型。

A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates.

作者信息

Lindström Johan, Szpiro Adam A, Sampson Paul D, Oron Assaf P, Richards Mark, Larson Tim V, Sheppard Lianne

机构信息

University of Washington, Seattle, USA. Lund University, Lund, Sweden.

University of Washington, Seattle, USA.

出版信息

Environ Ecol Stat. 2014 Sep;21(3):411-433. doi: 10.1007/s10651-013-0261-4.

Abstract

The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implemented in an R package, SpatioTemporal, available on CRAN. The model is used by the EPA funded Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) to produce estimates of ambient air pollution; MESA Air uses the estimates to investigate the relationship between chronic exposure to air pollution and cardiovascular disease. In this paper we use the model to predict long-term average concentrations of NO in the Los Angeles area during a ten year period. Predictions are based on measurements from the EPA Air Quality System, MESA Air specific monitoring, and output from a source dispersion model for traffic related air pollution (Caline3QHCR). Accuracy in predicting long-term average concentrations is evaluated using an elaborate cross-validation setup that accounts for a sparse spatio-temporal sampling pattern in the data, and adjusts for temporal effects. The predictive ability of the model is good with cross-validated of approximately 0.7 at subject sites. Replacing four geographic covariate indicators of traffic density with the Caline3QHCR dispersion model output resulted in very similar prediction accuracy from a more parsimonious and more interpretable model. Adding traffic-related geographic covariates to the model that included Caline3QHCR did not further improve the prediction accuracy.

摘要

开发能够在小空间尺度上提供准确的时空预测环境空气污染的模型,对于评估空气污染对健康的潜在影响非常重要。在此,我们提出了一个时空框架,该框架通过将来自几个不同监测网络的数据、确定性空气污染模型与地理信息系统(GIS)协变量相结合来预测环境空气污染。本文提出的模型已在R包SpatioTemporal中实现,该包可在CRAN上获取。美国环境保护局(EPA)资助的多族裔动脉粥样硬化与空气污染研究(MESA Air)使用该模型来生成环境空气污染的估计值;MESA Air利用这些估计值来研究长期接触空气污染与心血管疾病之间的关系。在本文中,我们使用该模型来预测洛杉矶地区十年期间一氧化氮(NO)的长期平均浓度。预测基于美国环境保护局空气质量系统的数据测量、MESA Air特定监测以及交通相关空气污染源扩散模型(Caline3QHCR)的输出。使用精心设计的交叉验证设置来评估预测长期平均浓度的准确性,该设置考虑了数据中稀疏的时空采样模式,并对时间效应进行了调整。该模型的预测能力良好,在各站点交叉验证的 约为0.7。用Caline3QHCR扩散模型输出替换交通密度的四个地理协变量指标,从一个更简洁且更具可解释性的模型得到了非常相似的预测准确性。将与交通相关的地理协变量添加到包含Caline3QHCR的模型中并没有进一步提高预测准确性。

相似文献

1
A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates.
Environ Ecol Stat. 2014 Sep;21(3):411-433. doi: 10.1007/s10651-013-0261-4.
5
Integrating traffic pollution dispersion into spatiotemporal NO prediction.
Sci Total Environ. 2024 May 15;925:171652. doi: 10.1016/j.scitotenv.2024.171652. Epub 2024 Mar 13.

引用本文的文献

2
Structural and social determinants of health: The multi-ethnic study of atherosclerosis.
PLoS One. 2024 Nov 18;19(11):e0313625. doi: 10.1371/journal.pone.0313625. eCollection 2024.
4
Integrating Mobile and Fixed-Site Black Carbon Measurements to Bridge Spatiotemporal Gaps in Urban Air Quality.
Environ Sci Technol. 2024 Jul 16;58(28):12563-12574. doi: 10.1021/acs.est.3c10829. Epub 2024 Jul 1.
5
Leveraging low-cost sensors to predict nitrogen dioxide for epidemiologic exposure assessment.
J Expo Sci Environ Epidemiol. 2025 Apr;35(2):169-179. doi: 10.1038/s41370-024-00667-w. Epub 2024 Apr 9.
6
Integrating traffic pollution dispersion into spatiotemporal NO prediction.
Sci Total Environ. 2024 May 15;925:171652. doi: 10.1016/j.scitotenv.2024.171652. Epub 2024 Mar 13.
7
Traffic-related air pollution and dementia incidence in the Adult Changes in Thought Study.
Environ Int. 2024 Jan;183:108418. doi: 10.1016/j.envint.2024.108418. Epub 2024 Jan 3.
8
Evaluating low-cost monitoring designs for PM exposure assessment with a spatiotemporal modeling approach.
Environ Pollut. 2024 Feb 15;343:123227. doi: 10.1016/j.envpol.2023.123227. Epub 2023 Dec 24.
9
10
Building Public Health Surveillance 3.0: Emerging Timely Measures of Physical, Economic, and Social Environmental Conditions Affecting Health.
Am J Public Health. 2022 Oct;112(10):1436-1445. doi: 10.2105/AJPH.2022.306917. Epub 2022 Aug 4.

本文引用的文献

3
Confounding and exposure measurement error in air pollution epidemiology.
Air Qual Atmos Health. 2012 Jun;5(2):203-216. doi: 10.1007/s11869-011-0140-9. Epub 2011 Mar 23.
5
Does more accurate exposure prediction necessarily improve health effect estimates?
Epidemiology. 2011 Sep;22(5):680-5. doi: 10.1097/EDE.0b013e3182254cc6.
7
Efficient measurement error correction with spatially misaligned data.
Biostatistics. 2011 Oct;12(4):610-23. doi: 10.1093/biostatistics/kxq083. Epub 2011 Jan 20.
8
A Spatio-Temporal Downscaler for Output From Numerical Models.
J Agric Biol Environ Stat. 2010 Jun 1;15(2):176-197. doi: 10.1007/s13253-009-0004-z.
9
Chronic fine and coarse particulate exposure, mortality, and coronary heart disease in the Nurses' Health Study.
Environ Health Perspect. 2009 Nov;117(11):1697-701. doi: 10.1289/ehp.0900572. Epub 2009 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验