College of Information Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, Zhejiang, China.
Department of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China.
Sci Rep. 2024 Jul 4;14(1):15432. doi: 10.1038/s41598-024-59263-5.
Previous research has primarily employed deep learning models such as Convolutional Neural Networks (CNNs), and Recurrent Neural Networks (RNNs) for decoding imagined character signals. These approaches have treated the temporal and spatial features of the signals in a sequential, parallel, or single-feature manner. However, there has been limited research on the cross-relationships between temporal and spatial features, despite the inherent association between channels and sampling points in Brain-Computer Interface (BCI) signal acquisition, which holds significant information about brain activity. To address the limited research on the relationships between temporal and spatial features, we proposed a Temporal-Spatial Cross-Attention Network model, named TSCA-Net. The TSCA-Net is comprised of four modules: the Temporal Feature (TF), the Spatial Feature (SF), the Temporal-Spatial Cross (TSCross), and the Classifier. The TF combines LSTM and Transformer to extract temporal features from BCI signals, while the SF captures spatial features. The TSCross is introduced to learn the correlations between the temporal and spatial features. The Classifier predicts the label of BCI data based on its characteristics. We validated the TSCA-Net model using publicly available datasets of handwritten characters, which recorded the spiking activity from two micro-electrode arrays (MEAs). The results showed that our proposed TSCA-Net outperformed other comparison models (EEG-Net, EEG-TCNet, S3T, GRU, LSTM, R-Transformer, and ViT) in terms of accuracy, precision, recall, and F1 score, achieving 92.66 , 92.77 , 92.70 , and 92.58 , respectively. The TSCA-Net model demonstrated a 3.65 to 7.49 improvement in accuracy over the comparison models.
先前的研究主要采用深度学习模型,如卷积神经网络(CNN)和循环神经网络(RNN),对想象中的字符信号进行解码。这些方法以顺序、并行或单特征的方式处理信号的时间和空间特征。然而,尽管脑机接口(BCI)信号采集过程中通道和采样点之间存在内在关联,包含了有关大脑活动的重要信息,但对于时间和空间特征之间的交叉关系的研究却很有限。为了解决时间和空间特征之间关系研究的局限性,我们提出了一种名为 TSCA-Net 的时空交叉注意网络模型。TSCA-Net 由四个模块组成:时间特征(TF)、空间特征(SF)、时空交叉(TSCross)和分类器。TF 结合 LSTM 和 Transformer 从 BCI 信号中提取时间特征,而 SF 则捕获空间特征。TSCross 用于学习时间和空间特征之间的相关性。分类器根据其特征预测 BCI 数据的标签。我们使用公开的手写字符数据集验证了 TSCA-Net 模型,该数据集记录了来自两个微电极阵列(MEA)的尖峰活动。结果表明,在准确性、精度、召回率和 F1 得分方面,我们提出的 TSCA-Net 优于其他比较模型(EEG-Net、EEG-TCNet、S3T、GRU、LSTM、R-Transformer 和 ViT),分别达到 92.66%、92.77%、92.70%和 92.58%。与比较模型相比,TSCA-Net 模型在准确性方面提高了 3.65%到 7.49%。