Karn Prakash Kumar, Abdulla Waleed H
Department of Electrical, Computer, and Software Engineering, The University of Auckland, Auckland 1010, New Zealand.
Bioengineering (Basel). 2024 Oct 16;11(10):1032. doi: 10.3390/bioengineering11101032.
This paper presents a deep-learning architecture for segmenting retinal fluids in patients with Diabetic Macular Oedema (DME) and Age-related Macular Degeneration (AMD). Accurate segmentation of multiple fluid types is critical for diagnosis and treatment planning, but existing techniques often struggle with precision. We propose an encoder-decoder network inspired by U-Net, processing enhanced OCT images and their edge maps. The encoder incorporates Residual and Inception modules with an autoencoder-based multiscale attention mechanism to extract detailed features. Our method shows superior performance across several datasets. On the RETOUCH dataset, the network achieved F1 Scores of 0.82 for intraretinal fluid (IRF), 0.93 for subretinal fluid (SRF), and 0.94 for pigment epithelial detachment (PED). The model also performed well on the OPTIMA and DUKE datasets, demonstrating high precision, recall, and F1 Scores. This architecture significantly enhances segmentation accuracy and edge precision, offering a valuable tool for diagnosing and managing retinal diseases. Its integration of dual-input processing, multiscale attention, and advanced encoder modules highlights its potential to improve clinical outcomes and advance retinal disease treatment.
本文提出了一种深度学习架构,用于对糖尿病性黄斑水肿(DME)和年龄相关性黄斑变性(AMD)患者的视网膜积液进行分割。准确分割多种积液类型对于诊断和治疗规划至关重要,但现有技术在精度方面往往存在困难。我们提出了一种受U-Net启发的编码器-解码器网络,对增强型OCT图像及其边缘图进行处理。编码器结合了残差模块和Inception模块以及基于自动编码器的多尺度注意力机制,以提取详细特征。我们的方法在多个数据集上表现出卓越的性能。在RETOUCH数据集上,该网络对视网膜内积液(IRF)的F1分数为0.82,对视网膜下积液(SRF)的F1分数为0.93,对色素上皮脱离(PED)的F1分数为0.94。该模型在OPTIMA和DUKE数据集上也表现良好,展示了高精度、召回率和F1分数。这种架构显著提高了分割精度和边缘精度,为视网膜疾病的诊断和管理提供了一个有价值的工具。其双输入处理、多尺度注意力和先进编码器模块的集成突出了其改善临床结果和推进视网膜疾病治疗的潜力。