LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France.
Center for Climate Systems Research, Columbia University, New York, NY, USA.
Nat Plants. 2024 Jul;10(7):1081-1090. doi: 10.1038/s41477-024-01739-3. Epub 2024 Jul 4.
Increasing global food demand will require more food production without further exceeding the planetary boundaries while simultaneously adapting to climate change. We used an ensemble of wheat simulation models with improved sink and source traits from the highest-yielding wheat genotypes to quantify potential yield gains and associated nitrogen requirements. This was explored for current and climate change scenarios across representative sites of major world wheat producing regions. The improved sink and source traits increased yield by 16% with current nitrogen fertilizer applications under both current climate and mid-century climate change scenarios. To achieve the full yield potential-a 52% increase in global average yield under a mid-century high warming climate scenario (RCP8.5), fertilizer use would need to increase fourfold over current use, which would unavoidably lead to higher environmental impacts from wheat production. Our results show the need to improve soil nitrogen availability and nitrogen use efficiency, along with yield potential.
不断增长的全球粮食需求将需要在不进一步超过地球承载边界的情况下增加粮食产量,同时适应气候变化。我们使用了一组具有改进的源和汇特性的小麦模拟模型,这些特性来自最高产的小麦基因型,以量化潜在的产量增长和相关的氮需求。这在当前和气候变化情景下,针对主要世界小麦产区的代表性地点进行了探索。在当前气候和本世纪中叶气候变化情景下,改进的源和汇特性在当前氮肥应用下使产量增加了 16%。为了实现全部产量潜力——即在本世纪中叶高变暖气候情景(RCP8.5)下全球平均产量增加 52%,氮肥的使用量将需要比当前使用量增加四倍,这将不可避免地导致小麦生产的环境影响更高。我们的结果表明,需要提高土壤氮的有效性和氮的利用效率,以及产量潜力。