Suppr超能文献

简单动态细胞培养系统可降低微电极阵列记录中的记录噪声。

Simple dynamic cell culture system reduces recording noise in microelectrode array recordings.

作者信息

Hoven Darius, Inaoka Misaki, McCoy Reece, Withers Aimee, Owens Róisín M, Malliaras George G

机构信息

Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA UK.

Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS UK.

出版信息

MRS Commun. 2024;14(3):261-266. doi: 10.1557/s43579-024-00554-3. Epub 2024 Apr 22.

Abstract

Microelectrode arrays (MEAs) have applications in drug discovery, toxicology, and basic research. They measure the electrophysiological response of tissue cultures to quantify changes upon exposure to biochemical stimuli. Unfortunately, manual addition of chemicals introduces significant noise in the recordings. Here, we report a simple-to-fabricate fluidic system that addresses this issue. We show that cell cultures can be successfully established in the fluidic compartment under continuous flow conditions and that the addition of chemicals introduces minimal noise in the recordings. This dynamic cell culture system represents an improvement over traditional tissue culture wells used in MEAs, facilitating electrophysiology measurements.

摘要

微电极阵列(MEA)在药物发现、毒理学和基础研究中都有应用。它们通过测量组织培养物的电生理反应来量化暴露于生化刺激后的变化。不幸的是,手动添加化学物质会在记录中引入大量噪声。在此,我们报告了一种易于制造的流体系统,该系统解决了这一问题。我们证明,在连续流动条件下,可以在流体隔室中成功建立细胞培养物,并且添加化学物质在记录中引入的噪声最小。这种动态细胞培养系统相较于MEA中使用的传统组织培养孔有了改进,有助于电生理学测量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbe/11219396/13bdc9356924/43579_2024_554_Fig1_HTML.jpg

相似文献

1
Simple dynamic cell culture system reduces recording noise in microelectrode array recordings.
MRS Commun. 2024;14(3):261-266. doi: 10.1557/s43579-024-00554-3. Epub 2024 Apr 22.
2
The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics.
Anal Bioanal Chem. 2011 Mar;399(7):2313-29. doi: 10.1007/s00216-010-3968-1. Epub 2010 Jul 31.
3
Functional imaging of brain organoids using high-density microelectrode arrays.
MRS Bull. 2022;47(6):530-544. doi: 10.1557/s43577-022-00282-w. Epub 2022 Jun 30.
5
Highly Customizable 3D Microelectrode Arrays for In Vitro and In Vivo Neuronal Tissue Recordings.
Adv Sci (Weinh). 2024 Apr;11(13):e2305944. doi: 10.1002/advs.202305944. Epub 2024 Jan 19.
6
Planar amorphous silicon carbide microelectrode arrays for chronic recording in rat motor cortex.
Biomaterials. 2024 Jul;308:122543. doi: 10.1016/j.biomaterials.2024.122543. Epub 2024 Mar 21.
7
Liquid Crystal Elastomer-Based Microelectrode Array for In Vitro Neuronal Recordings.
Micromachines (Basel). 2018 Aug 20;9(8):416. doi: 10.3390/mi9080416.
8
A flexible 3-dimensional microelectrode array for in vitro brain models.
Lab Chip. 2020 Mar 3;20(5):901-911. doi: 10.1039/c9lc01148j.
9
Electrophysiological Activity of Primary Cortical Neuron-Glia Mixed Cultures.
Cells. 2023 Mar 6;12(5):821. doi: 10.3390/cells12050821.
10
Improvements for recording retinal function with Microelectrode Arrays.
MethodsX. 2023 Dec 29;12:102543. doi: 10.1016/j.mex.2023.102543. eCollection 2024 Jun.

本文引用的文献

1
Electrophysiological In Vitro Study of Long-Range Signal Transmission by Astrocytic Networks.
Adv Sci (Weinh). 2023 Oct;10(29):e2301756. doi: 10.1002/advs.202301756. Epub 2023 Jul 23.
2
Integrated biosensors for monitoring microphysiological systems.
Lab Chip. 2022 Oct 11;22(20):3801-3816. doi: 10.1039/d2lc00262k.
3
Microfluidics for Neuronal Cell and Circuit Engineering.
Chem Rev. 2022 Sep 28;122(18):14842-14880. doi: 10.1021/acs.chemrev.2c00212. Epub 2022 Sep 7.
5
Ion Channels and Electrophysiological Properties of Astrocytes: Implications for Emergent Stimulation Technologies.
Front Cell Neurosci. 2021 May 20;15:644126. doi: 10.3389/fncel.2021.644126. eCollection 2021.
6
Nip the bubble in the bud: a guide to avoid gas nucleation in microfluidics.
Lab Chip. 2019 Jul 9;19(14):2296-2314. doi: 10.1039/c9lc00211a.
7
Organic transistor platform with integrated microfluidics for in-line multi-parametric cell monitoring.
Microsyst Nanoeng. 2017 Aug 14;3:17028. doi: 10.1038/micronano.2017.28. eCollection 2017.
8
Extracellular Electrophysiological Measurements of Cooperative Signals in Astrocytes Populations.
Front Neural Circuits. 2017 Oct 23;11:80. doi: 10.3389/fncir.2017.00080. eCollection 2017.
9
Microfluidic 3D cell culture: from tools to tissue models.
Curr Opin Biotechnol. 2015 Dec;35:118-26. doi: 10.1016/j.copbio.2015.05.002. Epub 2015 Jun 19.
10
Revealing neuronal function through microelectrode array recordings.
Front Neurosci. 2015 Jan 6;8:423. doi: 10.3389/fnins.2014.00423. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验