Suppr超能文献

用于监测微生理系统的集成生物传感器。

Integrated biosensors for monitoring microphysiological systems.

机构信息

Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.

Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong, P. R. China.

出版信息

Lab Chip. 2022 Oct 11;22(20):3801-3816. doi: 10.1039/d2lc00262k.

Abstract

Microphysiological systems (MPSs), also known as organ-on-a-chip models, aim to recapitulate the functional components of human tissues or organs . Over the last decade, with the advances in biomaterials, 3D bioprinting, and microfluidics, numerous MPSs have emerged with applications to study diseased and healthy tissue models. Various organs have been modeled using MPS technology, such as the heart, liver, lung, and blood-brain barrier. An important aspect of modeling is the accurate phenotypical and functional characterization of the modeled organ. However, most conventional characterization methods are invasive and destructive and do not allow continuous monitoring of the cells in culture. On the other hand, microfluidic biosensors enable in-line, real-time sensing of target molecules with an excellent limit of detection and in a non-invasive manner, thereby effectively overcoming the limitation of the traditional techniques. Consequently, microfluidic biosensors have been increasingly integrated into MPSs and used for in-line target detection. This review discusses the state-of-the-art microfluidic biosensors by providing specific examples, detailing their main advantages in monitoring MPSs, and highlighting current developments in this field. Finally, we describe the remaining challenges and potential future developments to advance the current state-of-the-art in integrated microfluidic biosensors.

摘要

微生理系统(MPS),也称为器官芯片模型,旨在重现人体组织或器官的功能组件。在过去的十年中,随着生物材料、3D 生物打印和微流控技术的进步,出现了许多 MPS,可用于研究疾病和健康组织模型。已经使用 MPS 技术对各种器官进行了建模,例如心脏、肝脏、肺和血脑屏障。建模的一个重要方面是对建模器官进行准确的表型和功能表征。然而,大多数传统的表征方法具有侵入性和破坏性,并且不允许对培养中的细胞进行连续监测。另一方面,微流控生物传感器能够以非侵入性的方式,对目标分子进行在线、实时感应,具有出色的检测限,从而有效地克服了传统技术的局限性。因此,微流控生物传感器已越来越多地集成到 MPS 中,并用于在线目标检测。本文通过提供具体示例,讨论了最新的微流控生物传感器,详细说明了它们在监测 MPS 方面的主要优势,并强调了该领域的当前发展。最后,我们描述了剩余的挑战和潜在的未来发展,以推进集成微流控生物传感器的现状。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验