Suppr超能文献

使用在健康受试者身上训练的人工智能模型来量化损伤和疾病严重程度。

Quantifying impairment and disease severity using AI models trained on healthy subjects.

作者信息

Yu Boyang, Kaku Aakash, Liu Kangning, Parnandi Avinash, Fokas Emily, Venkatesan Anita, Pandit Natasha, Ranganath Rajesh, Schambra Heidi, Fernandez-Granda Carlos

机构信息

Center for Data Science, New York University, 60 Fifth Ave, New York, NY, 10011, USA.

Department of Neurology, NYU Grossman School of Medicine, 550 1st Ave, New York, NY, 10016, USA.

出版信息

NPJ Digit Med. 2024 Jul 6;7(1):180. doi: 10.1038/s41746-024-01173-x.

Abstract

Automatic assessment of impairment and disease severity is a key challenge in data-driven medicine. We propose a framework to address this challenge, which leverages AI models trained exclusively on healthy individuals. The COnfidence-Based chaRacterization of Anomalies (COBRA) score exploits the decrease in confidence of these models when presented with impaired or diseased patients to quantify their deviation from the healthy population. We applied the COBRA score to address a key limitation of current clinical evaluation of upper-body impairment in stroke patients. The gold-standard Fugl-Meyer Assessment (FMA) requires in-person administration by a trained assessor for 30-45 minutes, which restricts monitoring frequency and precludes physicians from adapting rehabilitation protocols to the progress of each patient. The COBRA score, computed automatically in under one minute, is shown to be strongly correlated with the FMA on an independent test cohort for two different data modalities: wearable sensors (ρ = 0.814, 95% CI [0.700,0.888]) and video (ρ = 0.736, 95% C.I [0.584, 0.838]). To demonstrate the generalizability of the approach to other conditions, the COBRA score was also applied to quantify severity of knee osteoarthritis from magnetic-resonance imaging scans, again achieving significant correlation with an independent clinical assessment (ρ = 0.644, 95% C.I [0.585,0.696]).

摘要

在数据驱动的医学中,自动评估损伤和疾病严重程度是一项关键挑战。我们提出了一个框架来应对这一挑战,该框架利用专门针对健康个体训练的人工智能模型。基于置信度的异常特征化(COBRA)评分利用这些模型在面对受损或患病患者时置信度的下降来量化他们与健康人群的偏差。我们应用COBRA评分来解决中风患者上身损伤当前临床评估的一个关键限制。金标准的Fugl-Meyer评估(FMA)需要由经过培训的评估人员亲自进行30至45分钟的评估,这限制了监测频率,并使医生无法根据每个患者的进展调整康复方案。在不到一分钟的时间内自动计算出的COBRA评分,在针对两种不同数据模式的独立测试队列中显示出与FMA有很强的相关性:可穿戴传感器(ρ = 0.814,95%置信区间[0.700,0.888])和视频(ρ = 0.736,95%置信区间[0.584, 0.838])。为了证明该方法对其他病症的通用性,COBRA评分还被应用于从磁共振成像扫描中量化膝关节骨关节炎的严重程度,同样与独立的临床评估取得了显著相关性(ρ = 0.644,95%置信区间[0.585,0.696])。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0081/11226623/4b119b55b00b/41746_2024_1173_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验