Suppr超能文献

机器学习预测入院时 COVID-19 疾病严重程度。

Machine learning prediction for COVID-19 disease severity at hospital admission.

机构信息

Departments of Internal Medicine and Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.

Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.

出版信息

BMC Med Inform Decis Mak. 2023 Mar 7;23(1):46. doi: 10.1186/s12911-023-02132-4.

Abstract

IMPORTANCE

Early prognostication of patients hospitalized with COVID-19 who may require mechanical ventilation and have worse outcomes within 30 days of admission is useful for delivering appropriate clinical care and optimizing resource allocation.

OBJECTIVE

To develop machine learning models to predict COVID-19 severity at the time of the hospital admission based on a single institution data.

DESIGN, SETTING, AND PARTICIPANTS: We established a retrospective cohort of patients with COVID-19 from University of Texas Southwestern Medical Center from May 2020 to March 2022. Easily accessible objective markers including basic laboratory variables and initial respiratory status were assessed using Random Forest's feature importance score to create a predictive risk score. Twenty-five significant variables were identified to be used in classification models. The best predictive models were selected with repeated tenfold cross-validation methods.

MAIN OUTCOMES AND MEASURES

Among patients with COVID-19 admitted to the hospital, severity was defined by 30-day mortality (30DM) rates and need for mechanical ventilation.

RESULTS

This was a large, single institution COVID-19 cohort including total of 1795 patients. The average age was 59.7 years old with diverse heterogeneity. 236 (13%) required mechanical ventilation and 156 patients (8.6%) died within 30 days of hospitalization. Predictive accuracy of each predictive model was validated with the 10-CV method. Random Forest classifier for 30DM model had 192 sub-trees, and obtained 0.72 sensitivity and 0.78 specificity, and 0.82 AUC. The model used to predict MV has 64 sub-trees and returned obtained 0.75 sensitivity and 0.75 specificity, and 0.81 AUC. Our scoring tool can be accessed at https://faculty.tamuc.edu/mmete/covid-risk.html .

CONCLUSIONS AND RELEVANCE

In this study, we developed a risk score based on objective variables of COVID-19 patients within six hours of admission to the hospital, therefore helping predict a patient's risk of developing critical illness secondary to COVID-19.

摘要

重要性

对因 COVID-19 住院且可能需要机械通气且在入院后 30 天内预后较差的患者进行早期预后评估,有助于提供适当的临床护理并优化资源分配。

目的

基于单中心数据,开发机器学习模型以预测 COVID-19 入院时的严重程度。

设计、地点和参与者:我们建立了一个来自德克萨斯大学西南医学中心的 COVID-19 患者回顾性队列,时间为 2020 年 5 月至 2022 年 3 月。使用随机森林特征重要性评分评估易于获得的客观标志物,包括基本实验室变量和初始呼吸状态,以创建预测风险评分。确定了 25 个重要变量,用于分类模型。使用重复的 10 倍交叉验证方法选择最佳预测模型。

主要结果和措施

在因 COVID-19 入院的患者中,严重程度定义为 30 天死亡率(30DM)和需要机械通气。

结果

这是一个大型的单中心 COVID-19 队列,共纳入了 1795 名患者。平均年龄为 59.7 岁,具有不同的异质性。236 人(13%)需要机械通气,156 人(8.6%)在住院后 30 天内死亡。使用 10-CV 方法验证了每个预测模型的预测准确性。用于 30DM 模型的随机森林分类器有 192 个子树,获得了 0.72 的敏感性和 0.78 的特异性,以及 0.82 的 AUC。用于预测 MV 的模型有 64 个子树,返回的敏感性为 0.75,特异性为 0.75,AUC 为 0.81。我们的评分工具可在 https://faculty.tamuc.edu/mmete/covid-risk.html 上访问。

结论和相关性

在这项研究中,我们开发了一种基于 COVID-19 患者入院后六小时内的客观变量的风险评分,因此有助于预测患者因 COVID-19 发展为危重病的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f25/9993672/094254135b0d/12911_2023_2132_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验