Suppr超能文献

基于动态对比增强磁共振图像的放射组学分析:乳腺癌淋巴管血管侵犯的预测列线图。

Radiomics-based analysis of dynamic contrast-enhanced magnetic resonance image: A prediction nomogram for lymphovascular invasion in breast cancer.

机构信息

Department of Radiology, Xiangtan Central Hospital, No. 120, Heping Road, Yuhu District, Xiangtan, Hunan 411000, China.

Breast Surgery Department, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College and Hospital, Beijing 100000, China.

出版信息

Magn Reson Imaging. 2024 Oct;112:89-99. doi: 10.1016/j.mri.2024.07.001. Epub 2024 Jul 4.

Abstract

OBJECTIVE

To develop and validate a nomogram for quantitively predicting lymphovascular invasion (LVI) of breast cancer (BC) based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) radiomics and morphological features.

METHODS

We retrospectively divided 238 patients with BC into training and validation cohorts. Radiomic features from DCE-MRI were subdivided into A1 and A2, representing the first and second post-contrast images respectively. We utilized the minimal redundancy maximal relevance filter to extract radiomic features, then we employed the least absolute shrinkage and selection operator regression to screen these features and calculate individualized radiomics score (Rad score). Through the application of multivariate logistic regression, we built a prediction nomogram that integrated DCE-MRI radiomics and MR morphological features (MR-MF). The diagnostic capabilities were evaluated by comparing C-indices and calibration curves.

RESULTS

The diagnostic efficiency of the A1/A2 radiomics model surpassed that of the A1 and A2 alone. Furthermore, we incorporated the MR-MF (diffusion-weighted imaging rim sign, peritumoral edema) and optimized Radiomics into a hybrid nomogram. The C-indices for the training and validation cohorts were 0.868 (95% CI: 0.839-0.898) and 0.847 (95% CI: 0.787-0.907), respectively, indicating a good level of discrimination. Moreover, the calibration plots demonstrated excellent agreement in the training and validation cohorts, confirming the effectiveness of the calibration.

CONCLUSION

This nomogram combined MR-MF and A1/A2 Radiomics has the potential to preoperatively predict LVI in patients with BC.

摘要

目的

基于动态对比增强磁共振成像(DCE-MRI)放射组学和形态学特征,开发并验证一种用于定量预测乳腺癌(BC)淋巴管侵犯(LVI)的列线图。

方法

我们回顾性地将 238 例 BC 患者分为训练和验证队列。DCE-MRI 的放射组学特征分为 A1 和 A2 亚组,分别代表增强后的第一和第二图像。我们利用最小冗余最大相关滤波器提取放射组学特征,然后采用最小绝对收缩和选择算子回归筛选这些特征并计算个体化放射组学评分(Rad 评分)。通过应用多变量逻辑回归,我们构建了一个整合 DCE-MRI 放射组学和 MR 形态学特征(MR-MF)的预测列线图。通过比较 C 指数和校准曲线来评估诊断能力。

结果

A1/A2 放射组学模型的诊断效率优于 A1 和 A2 单独使用。此外,我们将 MR-MF(弥散加权成像边缘征、瘤周水肿)和优化后的放射组学纳入混合列线图。训练和验证队列的 C 指数分别为 0.868(95%CI:0.839-0.898)和 0.847(95%CI:0.787-0.907),表明具有良好的区分度。此外,校准图在训练和验证队列中均显示出良好的一致性,证实了校准的有效性。

结论

该列线图结合了 MR-MF 和 A1/A2 放射组学,具有术前预测 BC 患者 LVI 的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验