Suppr超能文献

基于MRI影像组学和形态学特征驱动的TabPFN模型用于浸润性乳腺癌术前预测淋巴管浸润

MRI Delta-Radiomics and Morphological Feature-Driven TabPFN Model for Preoperative Prediction of Lymphovascular Invasion in Invasive Breast Cancer.

作者信息

Li Yunhua, Yang Jianfeng, Xiao Pan, Liu Haibo, Zhou Yingjun, Yang Xiuqi, Chen Gangwen, Zuo Zhichao

机构信息

Department of Radiology, the Jintang First People's Hospital, West China Sichuan University Jintang Hospital, Chengdu, Sichuan, China.

Department of Burn and plastic, Xiangtan Central Hospital, Xiangtan, Hunan, China.

出版信息

Technol Cancer Res Treat. 2025 Jan-Dec;24:15330338251362050. doi: 10.1177/15330338251362050. Epub 2025 Jul 22.

Abstract

BackgroundTraditional dynamic contrast-enhanced MRI (DCE-MRI) radiomics approaches for predicting lymphovascular invasion (LVI) in invasive breast cancer (IBC) frequently neglect the importance of dynamic phase alterations, and their diagnostic efficacy is often constrained by limited sample sizes. We have developed the Tabular Prior-data Fitted Network (TabPFN) algorithm, which synergistically combines clinical and MR morphological features with delta-radiomics, thereby substantially improving the performance of binary classification.MethodIn this retrospective study, 276 IBC patients were divided into a training group (n = 193, 70%) and a validation set (n = 83, 30%). A radiomic score (Radscore) was developed using 1239 radiomic features derived from lesion masks in delta images, establishing the delta-radiomics model. To preoperatively predict LVI, we utilized the TabPFN algorithm alongside traditional machine learning methods. This approach combined the Radscore with both clinical and MR morphological features for binary classification.ResultsThe delta-radiomics model achieved an area under the curve (AUC) of 0.775. Among the evaluated machine learning models, the TabPFN algorithm demonstrated superior performance by effectively integrating the Radscore along with clinical and MR morphological features, resulting in an AUC of 0.899. Additionally, it recorded an accuracy of 0.88, a precision of 0.667, a recall of 0.571, and an F1-score of 0.615.ConclusionDelta-radiomics analysis shows potential for predicting preoperative LVI in IBC patients. To tackle small sample sizes, we developed the TabPFN algorithm, combining clinical and MR morphological features with Radscore, enhancing binary classification and demonstrating strong predictive performance.

摘要

背景

传统的动态对比增强磁共振成像(DCE-MRI)放射组学方法在预测浸润性乳腺癌(IBC)中的淋巴管侵犯(LVI)时,常常忽视动态期改变的重要性,且其诊断效能常受限于样本量较小。我们开发了表格先验数据拟合网络(TabPFN)算法,该算法将临床和磁共振形态学特征与增量放射组学协同结合,从而显著提高了二元分类的性能。

方法

在这项回顾性研究中,276例IBC患者被分为训练组(n = 193,70%)和验证集(n = 83,30%)。利用从增量图像中的病变掩码提取的1239个放射组学特征建立了放射组学评分(Radscore),构建了增量放射组学模型。为了术前预测LVI,我们将TabPFN算法与传统机器学习方法一起使用。这种方法将Radscore与临床和磁共振形态学特征相结合用于二元分类。

结果

增量放射组学模型的曲线下面积(AUC)为0.775。在评估的机器学习模型中,TabPFN算法通过有效整合Radscore以及临床和磁共振形态学特征表现出卓越的性能,AUC为0.899。此外,其准确率为0.88,精确率为0.667,召回率为0.571,F1分数为0.615。

结论

增量放射组学分析显示出预测IBC患者术前LVI的潜力。为了解决样本量小的问题,我们开发了TabPFN算法,将临床和磁共振形态学特征与Radscore相结合,增强了二元分类并展示出强大的预测性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验