Suppr超能文献

盐胁迫下耐盐紫花苜蓿差异基因表达及其与根瘤菌 Ensifer meliloti 的互作。

Differential gene expression of salt-tolerant alfalfa in response to salinity and inoculation by Ensifer meliloti.

机构信息

Department of Plant Sciences, College of Agriculture and Bio-Resources, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N5A8, Canada.

出版信息

BMC Plant Biol. 2024 Jul 6;24(1):633. doi: 10.1186/s12870-024-05337-5.

Abstract

BACKGROUND

Alfalfa (Medicago sativa L.) experiences many negative effects under salinity stress, which may be mediated by recurrent selection. Salt-tolerant alfalfa may display unique adaptations in association with rhizobium under salt stress.

RESULTS

To elucidate inoculation effects on salt-tolerant alfalfa under salt stress, this study leveraged a salt-tolerant alfalfa population selected through two cycles of recurrent selection under high salt stress. After experiencing 120-day salt stress, mRNA was extracted from 8 random genotypes either grown in 0 or 8 dS/m salt stress with or without inoculation by Ensifer meliloti. Results showed 320 and 176 differentially expressed genes (DEGs) modulated in response to salinity stress or inoculation x salinity stress, respectively. Notable results in plants under 8 dS/m stress included upregulation of a key gene involved in the Target of Rapamycin (TOR) signaling pathway with a concomitant decrease in expression of the SNrK pathway. Inoculation of salt-stressed plants stimulated increased transcription of a sulfate-uptake gene as well as upregulation of the Lysine-27-trimethyltransferase (EZH2), Histone 3 (H3), and argonaute (AGO, a component of miRISC silencing complexes) genes related to epigenetic and post-transcriptional gene control.

CONCLUSIONS

Salt-tolerant alfalfa may benefit from improved activity of TOR and decreased activity of SNrK1 in salt stress, while inoculation by rhizobiumstimulates production of sulfate uptake- and other unique genes.

摘要

背景

紫花苜蓿(Medicago sativa L.)在盐胁迫下会经历许多负面影响,这可能是通过反复选择介导的。耐盐紫花苜蓿在盐胁迫下与根瘤菌共生可能表现出独特的适应性。

结果

为了阐明接种对盐胁迫下耐盐紫花苜蓿的影响,本研究利用经过两轮高盐胁迫下的反复选择而选育出的耐盐紫花苜蓿群体。在经历 120 天盐胁迫后,从 8 个随机基因型中提取 mRNA,这些基因型在 0 或 8 dS/m 盐胁迫下生长,有无根瘤菌(Ensifer meliloti)接种。结果表明,320 个和 176 个差异表达基因(DEGs)分别对盐胁迫或接种 x 盐胁迫有响应。在 8 dS/m 胁迫下的植物中,值得注意的结果包括参与雷帕霉素(TOR)信号通路的关键基因上调,同时 SNrK 途径的表达下调。接种盐胁迫植物刺激硫酸盐摄取基因的转录增加,以及赖氨酸-27-三甲基转移酶(EZH2)、组蛋白 3(H3)和 Argonaute(AGO,miRISC 沉默复合物的组成部分)基因的上调,这些基因与表观遗传和转录后基因调控有关。

结论

耐盐紫花苜蓿可能受益于 TOR 活性的提高和 SNrK1 活性的降低,而根瘤菌的接种刺激硫酸盐摄取和其他独特基因的产生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f960/11227210/bc90a59205cc/12870_2024_5337_Fig1_HTML.jpg

相似文献

2
Mining alfalfa (Medicago sativa L.) nodules for salinity tolerant non-rhizobial bacteria to improve growth of alfalfa under salinity stress.
Ecotoxicol Environ Saf. 2018 Oct 30;162:129-138. doi: 10.1016/j.ecoenv.2018.06.092. Epub 2018 Jul 11.
6
Novel underlying regulatory mechanism of the MsDAD2-mediated salt stress response in alfalfa.
Biochem Biophys Res Commun. 2024 Jan 1;690:149252. doi: 10.1016/j.bbrc.2023.149252. Epub 2023 Nov 16.
10
Rhizobial strains exert a major effect on the amino acid composition of alfalfa nodules under NaCl stress.
Plant Physiol Biochem. 2016 Nov;108:344-352. doi: 10.1016/j.plaphy.2016.08.002. Epub 2016 Aug 3.

引用本文的文献

1
CLC gene family in : genome-wide identification, expression, and evolutionary analysis of tomato in response to salinity and Cd stress.
Front Plant Sci. 2025 Apr 29;16:1547723. doi: 10.3389/fpls.2025.1547723. eCollection 2025.
2
Investigating the salinity distribution using field measurements in the semi-arid region of southern Ethiopia.
Environ Monit Assess. 2025 Jan 10;197(2):159. doi: 10.1007/s10661-024-13576-0.

本文引用的文献

2
Comparative Physiological and Transcriptome Profiles Uncover Salt Tolerance Mechanisms in Alfalfa.
Front Plant Sci. 2022 Jun 9;13:931619. doi: 10.3389/fpls.2022.931619. eCollection 2022.
3
Soybean Leaf Proteomic Profile Influenced by Rhizobacteria Under Optimal and Salt Stress Conditions.
Front Plant Sci. 2022 Mar 24;13:809906. doi: 10.3389/fpls.2022.809906. eCollection 2022.
4
At the Crossroads of Salinity and Rhizobium-Legume Symbiosis.
Mol Plant Microbe Interact. 2022 Jul;35(7):540-553. doi: 10.1094/MPMI-09-21-0231-FI. Epub 2022 Jun 17.
5
The emerging roles of ATG1/ATG13 kinase complex in plants.
J Plant Physiol. 2022 Apr;271:153653. doi: 10.1016/j.jplph.2022.153653. Epub 2022 Mar 2.
8
Aminopeptidases trim Xaa-Pro proteins, initiating their degradation by the Pro/N-degron pathway.
Proc Natl Acad Sci U S A. 2021 Oct 26;118(43). doi: 10.1073/pnas.2115430118.
10
Water-Soluble Humic Materials Modulating Metabolism and Triggering Stress Defense in Sinorhizobium fredii.
Microbiol Spectr. 2021 Sep 3;9(1):e0029321. doi: 10.1128/Spectrum.00293-21. Epub 2021 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验