文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

工程化胞嘧啶碱基编辑器可实现链霉菌中广泛且高保真度的基因编辑。

Engineered cytosine base editor enabling broad-scope and high-fidelity gene editing in Streptomyces.

机构信息

Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.

School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China.

出版信息

Nat Commun. 2024 Jul 7;15(1):5687. doi: 10.1038/s41467-024-49987-3.


DOI:10.1038/s41467-024-49987-3
PMID:38971862
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11227558/
Abstract

Base editing (BE) faces protospacer adjacent motif (PAM) constraints and off-target effects in both eukaryotes and prokaryotes. For Streptomyces, renowned as one of the most prolific bacterial producers of antibiotics, the challenges are more pronounced due to its diverse genomic content and high GC content. Here, we develop a base editor named eSCBE3-NG-Hypa, tailored with both high efficiency and -fidelity for Streptomyces. Of note, eSCBE3-NG-Hypa recognizes NG PAM and exhibits high activity at challenging sites with high GC content or GC motifs, while displaying minimal off-target effects. To illustrate its practicability, we employ eSCBE3-NG-Hypa to achieve precise key amino acid conversion of the dehydratase (DH) domains within the modular polyketide synthase (PKS) responsible for the insecticide avermectins biosynthesis, achieving domains inactivation. The resulting DH-inactivated mutants, while ceasing avermectins production, produce a high yield of oligomycin, indicating competitive relationships among multiple biosynthetic gene clusters (BGCs) in Streptomyces avermitilis. Leveraging this insight, we use eSCBE3-NG-Hypa to introduce premature stop codons into competitor gene cluster of ave in an industrial S. avermitilis, with the mutant Δolm exhibiting the highest 4.45-fold increase in avermectin B1a compared to the control. This work provides a potent tool for modifying biosynthetic pathways and advancing metabolic engineering in Streptomyces.

摘要

碱基编辑 (BE) 在真核生物和原核生物中都面临着原间隔基序 (PAM) 的限制和脱靶效应。对于链霉菌来说,由于其基因组内容多样且 GC 含量高,因此在抗生素的生产方面非常出色,但其面临的挑战也更为显著。在这里,我们开发了一种名为 eSCBE3-NG-Hypa 的碱基编辑器,它在链霉菌中具有高效和高保真度。值得注意的是,eSCBE3-NG-Hypa 识别 NG PAM,并在具有高 GC 含量或 GC 基序的具有挑战性的位点表现出高活性,同时显示出最小的脱靶效应。为了说明其实用性,我们使用 eSCBE3-NG-Hypa 来实现负责杀虫抗生素阿维菌素生物合成的模块化聚酮合酶 (PKS) 中脱水酶 (DH) 结构域的精确关键氨基酸转换,从而实现结构域失活。所得的 DH 失活突变体虽然停止了阿维菌素的产生,但产生了高产量的寡霉素,表明链霉菌中多个生物合成基因簇 (BGC) 之间存在竞争关系。利用这一见解,我们使用 eSCBE3-NG-Hypa 在工业生产阿维链霉菌中引入了 ave 竞争基因簇的提前终止密码子,突变体 Δolm 与对照相比,阿维菌素 B1a 的产量增加了 4.45 倍。这项工作为修饰生物合成途径和推进链霉菌代谢工程提供了有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59e5/11227558/faca73ebc046/41467_2024_49987_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59e5/11227558/578893836110/41467_2024_49987_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59e5/11227558/1afd7cdcecf7/41467_2024_49987_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59e5/11227558/15e1685e4acb/41467_2024_49987_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59e5/11227558/3d3b917270b3/41467_2024_49987_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59e5/11227558/eb386df924bd/41467_2024_49987_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59e5/11227558/e087a30990b3/41467_2024_49987_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59e5/11227558/faca73ebc046/41467_2024_49987_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59e5/11227558/578893836110/41467_2024_49987_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59e5/11227558/1afd7cdcecf7/41467_2024_49987_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59e5/11227558/15e1685e4acb/41467_2024_49987_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59e5/11227558/3d3b917270b3/41467_2024_49987_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59e5/11227558/eb386df924bd/41467_2024_49987_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59e5/11227558/e087a30990b3/41467_2024_49987_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59e5/11227558/faca73ebc046/41467_2024_49987_Fig7_HTML.jpg

相似文献

[1]
Engineered cytosine base editor enabling broad-scope and high-fidelity gene editing in Streptomyces.

Nat Commun. 2024-7-7

[2]
Construction of ivermectin producer by domain swaps of avermectin polyketide synthase in Streptomyces avermitilis.

Appl Microbiol Biotechnol. 2006-10

[3]
Enhancement of acyl-CoA precursor supply for increased avermectin B1a production by engineering meilingmycin polyketide synthase and key primary metabolic pathway genes.

Microb Biotechnol. 2024-5

[4]
Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis.

Microb Cell Fact. 2017-1-17

[5]
Designed biosynthesis of 25-methyl and 25-ethyl ivermectin with enhanced insecticidal activity by domain swap of avermectin polyketide synthase.

Microb Cell Fact. 2015-9-24

[6]
Enhanced production of avermectin by deletion of type III polyketide synthases biosynthetic cluster rpp in Streptomyces avermitilis.

Lett Appl Microbiol. 2016-11

[7]
Comparative transcriptome analysis for avermectin overproduction via Streptomyces avermitilis microarray system.

J Microbiol Biotechnol. 2007-3

[8]
industrial strain as cell factory for Ivermectin B1a production.

Synth Syst Biotechnol. 2018-12-27

[9]
Overexpression of the ABC transporter AvtAB increases avermectin production in Streptomyces avermitilis.

Appl Microbiol Biotechnol. 2011-6-29

[10]
Alternative production of avermectin components in Streptomyces avermitilis by gene replacement.

J Microbiol. 2005-6

引用本文的文献

[1]
Identification of a critical gene involved in the biosynthesis of the polyene macrolide lavencidin in FRI-5 using the Target-AID (activation-induced cytidine deaminase) base editing technology.

Appl Environ Microbiol. 2025-5-21

[2]
Application of multiple genomic-editing technologies in for improved enduracidin yield.

Synth Syst Biotechnol. 2025-2-17

[3]
Engineering of Peptide-Inserted Base Editors with Enhanced Accuracy and Security.

Small. 2025-4

[4]
Metabolic engineering approaches for the biosynthesis of antibiotics.

Microb Cell Fact. 2025-1-31

[5]
One-for-all gene inactivation via PAM-independent base editing in bacteria.

J Biol Chem. 2025-1

[6]
Next-generation CRISPR technology for genome, epigenome and mitochondrial editing.

Transgenic Res. 2024-10

本文引用的文献

[1]
Improved polyketide production in C. glutamicum by preventing propionate-induced growth inhibition.

Nat Metab. 2023-7

[2]
Dissection of 3D chromosome organization in A3(2) leads to biosynthetic gene cluster overexpression.

Proc Natl Acad Sci U S A. 2023-3-14

[3]
SuperFi-Cas9 exhibits remarkable fidelity but severely reduced activity yet works effectively with ABE8e.

Nat Commun. 2022-11-11

[4]
Cytosine base editing systems with minimized off-target effect and molecular size.

Nat Commun. 2022-8-8

[5]
Increasing the Targeting Scope of CRISPR Base Editing System Beyond NGG.

CRISPR J. 2022-4

[6]
Structural basis for mismatch surveillance by CRISPR-Cas9.

Nature. 2022-3

[7]
Genome editing in large animal models.

Mol Ther. 2021-11-3

[8]
Precise plant genome editing using base editors and prime editors.

Nat Plants. 2021-9

[9]
Base editing: advances and therapeutic opportunities.

Nat Rev Drug Discov. 2020-12

[10]
Single C-to-T substitution using engineered APOBEC3G-nCas9 base editors with minimum genome- and transcriptome-wide off-target effects.

Sci Adv. 2020-7-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索