Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China.
Nat Commun. 2024 Jul 7;15(1):5687. doi: 10.1038/s41467-024-49987-3.
Base editing (BE) faces protospacer adjacent motif (PAM) constraints and off-target effects in both eukaryotes and prokaryotes. For Streptomyces, renowned as one of the most prolific bacterial producers of antibiotics, the challenges are more pronounced due to its diverse genomic content and high GC content. Here, we develop a base editor named eSCBE3-NG-Hypa, tailored with both high efficiency and -fidelity for Streptomyces. Of note, eSCBE3-NG-Hypa recognizes NG PAM and exhibits high activity at challenging sites with high GC content or GC motifs, while displaying minimal off-target effects. To illustrate its practicability, we employ eSCBE3-NG-Hypa to achieve precise key amino acid conversion of the dehydratase (DH) domains within the modular polyketide synthase (PKS) responsible for the insecticide avermectins biosynthesis, achieving domains inactivation. The resulting DH-inactivated mutants, while ceasing avermectins production, produce a high yield of oligomycin, indicating competitive relationships among multiple biosynthetic gene clusters (BGCs) in Streptomyces avermitilis. Leveraging this insight, we use eSCBE3-NG-Hypa to introduce premature stop codons into competitor gene cluster of ave in an industrial S. avermitilis, with the mutant Δolm exhibiting the highest 4.45-fold increase in avermectin B1a compared to the control. This work provides a potent tool for modifying biosynthetic pathways and advancing metabolic engineering in Streptomyces.
碱基编辑 (BE) 在真核生物和原核生物中都面临着原间隔基序 (PAM) 的限制和脱靶效应。对于链霉菌来说,由于其基因组内容多样且 GC 含量高,因此在抗生素的生产方面非常出色,但其面临的挑战也更为显著。在这里,我们开发了一种名为 eSCBE3-NG-Hypa 的碱基编辑器,它在链霉菌中具有高效和高保真度。值得注意的是,eSCBE3-NG-Hypa 识别 NG PAM,并在具有高 GC 含量或 GC 基序的具有挑战性的位点表现出高活性,同时显示出最小的脱靶效应。为了说明其实用性,我们使用 eSCBE3-NG-Hypa 来实现负责杀虫抗生素阿维菌素生物合成的模块化聚酮合酶 (PKS) 中脱水酶 (DH) 结构域的精确关键氨基酸转换,从而实现结构域失活。所得的 DH 失活突变体虽然停止了阿维菌素的产生,但产生了高产量的寡霉素,表明链霉菌中多个生物合成基因簇 (BGC) 之间存在竞争关系。利用这一见解,我们使用 eSCBE3-NG-Hypa 在工业生产阿维链霉菌中引入了 ave 竞争基因簇的提前终止密码子,突变体 Δolm 与对照相比,阿维菌素 B1a 的产量增加了 4.45 倍。这项工作为修饰生物合成途径和推进链霉菌代谢工程提供了有力工具。
Appl Microbiol Biotechnol. 2006-10
Microb Cell Fact. 2017-1-17
J Microbiol Biotechnol. 2007-3
Synth Syst Biotechnol. 2018-12-27
Appl Microbiol Biotechnol. 2011-6-29
Synth Syst Biotechnol. 2025-2-17
Microb Cell Fact. 2025-1-31
J Biol Chem. 2025-1
Transgenic Res. 2024-10
Proc Natl Acad Sci U S A. 2023-3-14
Mol Ther. 2021-11-3
Nat Plants. 2021-9
Nat Rev Drug Discov. 2020-12