Otsuka Ryo, Sato Yu, Okano Kenji, Okamura Eiji, Tomita Hiroya, Honda Kohsuke, Kitani Shigeru
International Center for Biotechnology, Osaka University, Suita, Osaka, Japan.
Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan.
Appl Environ Microbiol. 2025 May 21;91(5):e0097524. doi: 10.1128/aem.00975-24. Epub 2025 Apr 22.
Polyene macrolide antibiotics, produced mainly as secondary metabolites of streptomycetes, have distinct chemical structures and include clinically important antifungal drugs. We recently isolated the 28-membered polyene macrolide lavencidin from FRI-5. Here, we identify and characterize the lavencidin biosynthetic () gene cluster by combining a gene disruption system based on a base editing technology and analysis. Sequence analysis of the draft genome of FRI-5 revealed plausible lavencidin biosynthetic genes, which could be assigned roles in the biosynthesis of the polyketide backbone and the peripheral moiety, as well as in the regulation of lavencidin production. The introduction of a stop codon into the polyketide synthase (PKS) gene by the base editing system resulted in a complete loss of lavencidin production, indicating that the type I modular PKS system is responsible for the biosynthesis of lavencidin.IMPORTANCEPolyene macrolide antibiotics display a unique mode of action among fungicides and exhibit potent fungicidal activity to which resistance does not readily develop. Deciphering the biosynthetic pathways of these fascinating compounds will provide chemical diversity for the development of industrially and clinically important agents. In this study, the Target-AID (activation-induced cytidine deaminase) system enabled us to identify the gene cluster involved in lavencidin biosynthesis, paving the way for the rational design of lavencidin derivatives with new or improved biological activity. Furthermore, this base editing system is capable of precisely and rapidly substituting the target nucleotide in several streptomycetes. Thus, our Target-AID system would be a powerful and versatile tool for the genetic engineering of streptomycetes as well as for analyzing the functions of uncharacterized genes, expanding the chemical diversity of useful bioactive compounds, and discovering novel natural products.
多烯大环内酯类抗生素主要作为链霉菌的次生代谢产物产生,具有独特的化学结构,包括临床上重要的抗真菌药物。我们最近从FRI - 5中分离出了28元多烯大环内酯类化合物拉文西定。在此,我们通过结合基于碱基编辑技术的基因破坏系统和分析来鉴定和表征拉文西定生物合成()基因簇。对FRI - 5基因组草图的序列分析揭示了可能的拉文西定生物合成基因,这些基因可在聚酮骨架和外围部分的生物合成以及拉文西定生产的调控中发挥作用。通过碱基编辑系统在聚酮合酶(PKS)基因中引入终止密码子导致拉文西定生产完全丧失,表明I型模块化PKS系统负责拉文西定的生物合成。重要性多烯大环内酯类抗生素在杀菌剂中显示出独特的作用模式,并表现出强大的杀真菌活性,不易产生耐药性。破译这些迷人化合物的生物合成途径将为工业和临床重要药物的开发提供化学多样性。在本研究中,Target - AID(激活诱导的胞苷脱氨酶)系统使我们能够鉴定参与拉文西定生物合成的基因簇,为合理设计具有新的或改进的生物活性的拉文西定衍生物铺平了道路。此外,这种碱基编辑系统能够在几种链霉菌中精确且快速地替换目标核苷酸。因此,我们的Target - AID系统将成为链霉菌基因工程以及分析未表征基因功能、扩大有用生物活性化合物的化学多样性和发现新型天然产物的强大而通用的工具。