Hong Zhuoqiao, Wang Haocheng, Zada Zaid, Gazula Harshvardhan, Turner David, Aubrey Bobbi, Niekerken Leonard, Doyle Werner, Devore Sasha, Dugan Patricia, Friedman Daniel, Devinsky Orrin, Flinker Adeen, Hasson Uri, Nastase Samuel A, Goldstein Ariel
Department of Psychology and the Neuroscience Institute, Princeton University, Princeton, NJ.
McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA.
bioRxiv. 2024 Oct 16:2024.06.12.598513. doi: 10.1101/2024.06.12.598513.
Recent research has used large language models (LLMs) to study the neural basis of naturalistic language processing in the human brain. LLMs have rapidly grown in complexity, leading to improved language processing capabilities. However, neuroscience researchers haven't kept up with the quick progress in LLM development. Here, we utilized several families of transformer-based LLMs to investigate the relationship between model size and their ability to capture linguistic information in the human brain. Crucially, a subset of LLMs were trained on a fixed training set, enabling us to dissociate model size from architecture and training set size. We used electrocorticography (ECoG) to measure neural activity in epilepsy patients while they listened to a 30-minute naturalistic audio story. We fit electrode-wise encoding models using contextual embeddings extracted from each hidden layer of the LLMs to predict word-level neural signals. In line with prior work, we found that larger LLMs better capture the structure of natural language and better predict neural activity. We also found a log-linear relationship where the encoding performance peaks in relatively earlier layers as model size increases. We also observed variations in the best-performing layer across different brain regions, corresponding to an organized language processing hierarchy.
最近的研究利用大语言模型(LLMs)来研究人类大脑中自然语言处理的神经基础。大语言模型的复杂性迅速增长,从而提高了语言处理能力。然而,神经科学研究人员并未跟上大语言模型发展的快速步伐。在此,我们利用了几个基于Transformer的大语言模型家族,来研究模型大小与其在人类大脑中捕捉语言信息能力之间的关系。至关重要的是,一部分大语言模型是在固定的训练集上进行训练的,这使我们能够将模型大小与架构和训练集大小区分开来。我们使用皮层脑电图(ECoG)来测量癫痫患者在听一段30分钟的自然主义音频故事时的神经活动。我们使用从大语言模型的每个隐藏层提取的上下文嵌入来拟合逐电极编码模型,以预测单词级别的神经信号。与先前的研究一致,我们发现更大的大语言模型能更好地捕捉自然语言的结构,并能更好地预测神经活动。我们还发现了一种对数线性关系,即随着模型大小的增加,编码性能在相对较早的层达到峰值。我们还观察到不同脑区中表现最佳的层存在差异,这对应于一个有组织的语言处理层次结构。