Suppr超能文献

细胞裂解中精确计时的分子机制。

Molecular mechanisms of precise timing in cell lysis.

机构信息

Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas.

Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas; Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas.

出版信息

Biophys J. 2024 Sep 17;123(18):3090-3099. doi: 10.1016/j.bpj.2024.07.008. Epub 2024 Jul 6.

Abstract

Many biological systems exhibit precise timing of events, and one of the most known examples is cell lysis, which is a process of breaking bacterial host cells in the virus infection cycle. However, the underlying microscopic picture of precise timing remains not well understood. We present a novel theoretical approach to explain the molecular mechanisms of effectively deterministic dynamics in biological systems. Our hypothesis is based on the idea of stochastic coupling between relevant underlying biophysical and biochemical processes that lead to noise cancellation. To test this hypothesis, we introduced a minimal discrete-state stochastic model to investigate how holin proteins produced by bacteriophages break the inner membranes of gram-negative bacteria. By explicitly solving this model, the dynamic properties of cell lysis are fully evaluated, and theoretical predictions quantitatively agree with available experimental data for both wild-type and holin mutants. It is found that the observed threshold-like behavior is a result of the balance between holin proteins entering the membrane and leaving the membrane during the lysis. Theoretical analysis suggests that the cell lysis achieves precise timing for wild-type species by maximizing the number of holins in the membrane and narrowing their spatial distribution. In contrast, for mutated species, these conditions are not satisfied. Our theoretical approach presents a possible molecular picture of precise dynamic regulation in intrinsically random biological processes.

摘要

许多生物系统都表现出事件的精确定时,其中最著名的例子之一是细胞裂解,这是病毒感染周期中破坏细菌宿主细胞的过程。然而,精确定时的潜在微观图景仍未得到很好的理解。我们提出了一种新的理论方法来解释生物系统中有效确定性动力学的分子机制。我们的假设基于相关潜在生物物理和生化过程之间的随机耦合的想法,这导致噪声消除。为了验证这一假设,我们引入了一个最小的离散状态随机模型来研究噬菌体产生的溶菌素如何破坏革兰氏阴性细菌的内膜。通过明确求解这个模型,我们全面评估了细胞裂解的动态特性,并且理论预测与野生型和溶菌素突变体的可用实验数据定量一致。结果发现,观察到的类阈值行为是由于在裂解过程中溶菌素蛋白进入膜和离开膜之间的平衡。理论分析表明,细胞裂解通过最大化膜中溶菌素的数量并缩小其空间分布来实现对野生型物种的精确定时。相比之下,对于突变物种,这些条件不满足。我们的理论方法为内在随机生物过程中的精确动态调节提供了可能的分子图景。

引用本文的文献

1
Stochastic analysis of human ovarian aging and menopause timing.
Biophys J. 2025 Apr 1;124(7):1095-1104. doi: 10.1016/j.bpj.2025.02.004. Epub 2025 Feb 10.
2
Microscopic origin of the spatial and temporal precision in biological systems.
Biophys Rep (N Y). 2025 Mar 12;5(1):100197. doi: 10.1016/j.bpr.2025.100197. Epub 2025 Jan 28.

本文引用的文献

1
Core control principles of the eukaryotic cell cycle.
Nature. 2022 Jul;607(7918):381-386. doi: 10.1038/s41586-022-04798-8. Epub 2022 Jun 8.
2
Mechanisms and Applications of Bacterial Sporulation and Germination in the Intestine.
Int J Mol Sci. 2022 Mar 21;23(6):3405. doi: 10.3390/ijms23063405.
3
Exact Distribution of Threshold Crossing Times for Protein Concentrations: Implication for Biological Timekeeping.
Phys Rev Lett. 2022 Jan 28;128(4):048101. doi: 10.1103/PhysRevLett.128.048101.
4
Towards a physical understanding of developmental patterning.
Nat Rev Genet. 2021 Aug;22(8):518-531. doi: 10.1038/s41576-021-00355-7. Epub 2021 May 10.
5
Protein hourglass: Exact first passage time distributions for protein thresholds.
Phys Rev E. 2020 Nov;102(5-1):052413. doi: 10.1103/PhysRevE.102.052413.
6
Stochastic Mechanisms of Cell-Size Regulation in Bacteria.
J Phys Chem Lett. 2020 Oct 15;11(20):8777-8782. doi: 10.1021/acs.jpclett.0c02627. Epub 2020 Oct 1.
7
Optimum Threshold Minimizes Noise in Timing of Intracellular Events.
iScience. 2020 Jun 26;23(6):101186. doi: 10.1016/j.isci.2020.101186. Epub 2020 May 21.
8
How to fit in: The learning principles of cell differentiation.
PLoS Comput Biol. 2020 Apr 13;16(4):e1006811. doi: 10.1371/journal.pcbi.1006811. eCollection 2020 Apr.
9
SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
10
Mechanics and Dynamics of Bacterial Cell Lysis.
Biophys J. 2019 Jun 18;116(12):2378-2389. doi: 10.1016/j.bpj.2019.04.040. Epub 2019 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验