Diabeloop, 17 rue Félix Esclangon, Grenoble, 38000, France.
Diabeloop, 17 rue Félix Esclangon, Grenoble, 38000, France.
Artif Intell Med. 2024 Aug;154:102920. doi: 10.1016/j.artmed.2024.102920. Epub 2024 Jun 25.
The development of closed-loop systems for glycemia control in type I diabetes relies heavily on simulated patients. Improving the performances and adaptability of these close-loops raises the risk of over-fitting the simulator. This may have dire consequences, especially in unusual cases which were not faithfully - if at all - captured by the simulator. To address this, we propose to use model-free offline RL agents, trained on real patient data, to perform the glycemia control. To further improve the performances, we propose an end-to-end personalization pipeline, which leverages offline-policy evaluation methods to remove altogether the need of a simulator, while still enabling an estimation of clinically relevant metrics for diabetes.
闭环系统在 I 型糖尿病血糖控制中的发展严重依赖于模拟患者。提高这些闭环的性能和适应性会增加对模拟器过度拟合的风险。这可能会产生严重的后果,尤其是在模拟器无法准确捕捉到的异常情况下。为了解决这个问题,我们建议使用基于无模型离线 RL 代理,基于真实患者数据进行血糖控制。为了进一步提高性能,我们提出了一个端到端的个性化管道,该管道利用离线策略评估方法完全消除了对模拟器的需求,同时仍然能够对糖尿病的临床相关指标进行估计。