Suppr超能文献

用于能量存储应用的基于溅射薄膜沉积激光诱导石墨烯的新型微型超级电容器装置。

Sputtered thin film deposited laser induced graphene based novel micro-supercapacitor device for energy storage application.

作者信息

Sain Sourav, Chowdhury Suman, Maity Sayantan, Maity Gurupada, Roy Susanta Sinha

机构信息

Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi-NCR, Greater Noida, 201314, India.

Department of Physics and Astrophysics, University of Delhi, Delhi, 110007, India.

出版信息

Sci Rep. 2024 Jul 15;14(1):16289. doi: 10.1038/s41598-024-62192-y.

Abstract

Pioneering flexible micro-supercapacitors, designed for exceptional energy and power density, transcend conventional storage limitations. Interdigitated electrodes (IDEs) based on laser-induced graphene (LIG), augmented with metal-oxide modifiers, harness synergies with layered graphene to achieve superior capacitance. This study presents a novel one-step process for sputtered plasma deposition of HfO, resulting in enhanced supercapacitance performance. Introducing LIG-HfO micro-supercapacitor (MSC) devices with varied oxygen flow rates further boosts supercapacitance performance by introducing oxygen functional groups. FESEM investigations demonstrate uniform coating of HfO on LIG fibers through sputtering. Specific capacitance measurements reveal 6.4 mF/cm at 5 mV/s and 4.5 mF/cm at a current density of 0.04 mA/cm. The LIG-HfO devices exhibit outstanding supercapacitor performance, boasting at least a fourfold increase over pristine LIG. Moreover, stability testing indicates a high retention rate of 97% over 5000 cycles, ensuring practical real-time applications.

摘要

开创性的柔性微型超级电容器,专为卓越的能量和功率密度而设计,突破了传统存储的限制。基于激光诱导石墨烯(LIG)的叉指式电极(IDE),通过金属氧化物改性剂增强,与层状石墨烯协同作用,实现了卓越的电容性能。本研究提出了一种用于溅射等离子体沉积HfO的新型一步法工艺,从而提高了超级电容性能。引入具有不同氧流量的LIG-HfO微型超级电容器(MSC)器件,通过引入氧官能团进一步提高了超级电容性能。场发射扫描电子显微镜(FESEM)研究表明,通过溅射,HfO在LIG纤维上实现了均匀涂层。比电容测量结果显示,在5 mV/s时为6.4 mF/cm²,在电流密度为0.04 mA/cm²时为4.5 mF/cm²。LIG-HfO器件展现出出色的超级电容器性能,相比原始LIG至少提高了四倍。此外,稳定性测试表明,在5000次循环中保留率高达97%,确保了实际实时应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80de/11251010/99ec7e9c0878/41598_2024_62192_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验