Ghosh Subrata, Behera Sushant K, Mishra Ashutosh, Casari Carlo S, Ostrikov Kostya Ken
Micro and Nanostructured Materials Laboratory (NanoLab), Department of Energy, Politecnico de Milano, Via Ponzio 34/3, Milano 20133, Italy.
Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
Energy Fuels. 2023 Oct 26;37(23):17836-17862. doi: 10.1021/acs.energyfuels.3c02714. eCollection 2023 Dec 7.
Electrochemical energy storage technology has emerged as one of the most viable solutions to tackle the challenge of fossil-fuel-based technology and associated global pollution. Supercapacitors are widely used for high-power applications, and there is tremendous ongoing effort to make them useful for high-energy storage applications. While electrode materials of supercapacitors play a central role in charge storage performance, insights into the contribution from different charge storage mechanisms are crucial from both fundamental and applied aspects. In this context, apart from the electric double layer and fast redox reaction at/near the surface, another pronounced contribution from the electrode is quantum capacitance (). Here, the origin of , how it contributes to the total capacitance, the possible strategies to improve it, and the state-of-art of electrode materials, including carbon, two-dimensional materials, and their composites, are discussed. Although most of the studies on quantifying are theoretical, some case studies on experimental measurements using standard electrochemical techniques are summarized. With an overview and critical analysis of theoretical studies on quantum capacitance of electrode materials, this review critically examines the supercapacitor design strategies, including choosing the right materials and electrolytes. These insights are also relevant to other types of clean energy storage technologies, including metal-ion capacitors and batteries.
电化学储能技术已成为应对基于化石燃料的技术及其相关全球污染挑战的最可行解决方案之一。超级电容器广泛应用于高功率应用领域,目前人们正在付出巨大努力使其适用于高能量存储应用。虽然超级电容器的电极材料在电荷存储性能中起着核心作用,但从基础和应用两个方面深入了解不同电荷存储机制的贡献至关重要。在这种背景下,除了双电层和表面/近表面的快速氧化还原反应外,电极的另一个显著贡献是量子电容()。在此,将讨论量子电容的起源、它如何对总电容做出贡献、改善它的可能策略以及包括碳、二维材料及其复合材料在内的电极材料的研究现状。尽管大多数关于量化量子电容的研究是理论性的,但也总结了一些使用标准电化学技术进行实验测量的案例研究。通过对电极材料量子电容理论研究的概述和批判性分析,本综述对超级电容器的设计策略进行了批判性审视,包括选择合适的材料和电解质。这些见解也与其他类型的清洁能源存储技术相关,包括金属离子电容器和电池。