Kumar Amit, Tan Chih-Shan, Kumar Nagesh, Singh Pragya, Sharma Yogesh, Leu Jihperng, Huang E-Wen, Winie Tan, Wei Kung-Hwa, Tseng Tseung Yuen
Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300 Taiwan.
Institute of Electronics, National Yang Ming Chiao Tung University Hsinchu 300 Taiwan
RSC Adv. 2021 Aug 6;11(43):26892-26907. doi: 10.1039/d1ra03911c. eCollection 2021 Aug 2.
The fabrication with high energy density and superior electrical/electrochemical properties of hierarchical porous 3D cross-linked graphene-based supercapacitors is one of the most urgent challenges for developing high-power energy supplies. We facilely synthesized a simple, eco-friendly, cost-effective heteroatoms (nitrogen, phosphorus, and fluorine) co-doped graphene oxide (NPFG) reduced by hydrothermal functionalization and freeze-drying approach with high specific surface areas and hierarchical pore structures. The effect of different heteroatoms doping on the energy storage performance of the synthesized reduced graphene oxide is investigated extensively. The electrochemical analysis performed in a three-electrode system cyclic voltammetry (CV), galvanostatic charging-discharging (GCD), and electrochemical impedance spectroscopy (EIS) demonstrates that the nitrogen, phosphorous, and fluorine co-doped graphene (NPFG-0.3) synthesized with the optimum amount of pentafluoropyridine and phytic acid (PA) exhibits a notably enhanced specific capacitance (319 F g at 0.5 A g), good rate capability, short relaxation time constant ( = 28.4 ms), and higher diffusion coefficient of electrolytic cations (Dk = 8.8261 × 10 cm s) in 6 M KOH aqueous electrolyte. The density functional theory (DFT) calculation result indicates that the N, F, and P atomic replacement within the rGO model could increase the energy value ( ) from -673.79 eV to -643.26 eV, demonstrating how the atomic level energy could improve the electrochemical reactivity with the electrolyte. The improved performance of NPFG-0.3 over NFG, PG, and pure rGO is mainly ascribed to the fast-kinetic process owing to the well-balanced electron/ion transport phenomenon. A symmetric coin cell supercapacitor device fabricated using NPFG-0.3 as the anode and cathode material with 6 M KOH aqueous electrolyte exhibits maximum specific energy of 38 W h kg, a maximum specific power of 716 W kg, and ∼88.2% capacitance retention after 10 000 cycles. The facile synthesis approach and promising electrochemical results suggest this synthesized NPFG-0.3 material has high potential for future supercapacitor application.
制备具有高能量密度和优异电学/电化学性能的分级多孔三维交联石墨烯基超级电容器,是开发高功率能源供应面临的最紧迫挑战之一。我们通过水热功能化和冷冻干燥方法,简便地合成了一种简单、环保、经济高效的杂原子(氮、磷和氟)共掺杂氧化石墨烯(NPFG),其具有高比表面积和分级孔结构。广泛研究了不同杂原子掺杂对合成的还原氧化石墨烯储能性能的影响。在三电极系统中进行的电化学分析——循环伏安法(CV)、恒电流充放电(GCD)和电化学阻抗谱(EIS)表明,用最佳量的五氟吡啶和植酸(PA)合成的氮、磷和氟共掺杂石墨烯(NPFG-0.3)在6 M KOH水性电解质中表现出显著增强的比电容(在0.5 A g时为319 F g)、良好的倍率性能、短的弛豫时间常数( = 28.4 ms)和更高的电解阳离子扩散系数(Dk = 8.8261 × 10 cm s)。密度泛函理论(DFT)计算结果表明,rGO模型中的N、F和P原子取代可使能量值( )从-673.79 eV增加到-643.26 eV,证明了原子级能量如何改善与电解质的电化学反应性。NPFG-0.3相对于NFG、PG和纯rGO的性能提升主要归因于由于电子/离子传输现象良好平衡而导致的快速动力学过程。使用NPFG-0.3作为阳极和阴极材料以及6 M KOH水性电解质制备的对称硬币型超级电容器装置表现出38 W h kg的最大比能量、716 W kg的最大比功率以及在10000次循环后约88.2%的电容保持率。这种简便的合成方法和有前景的电化学结果表明,这种合成的NPFG-0.3材料在未来超级电容器应用中具有很高的潜力。