Suppr超能文献

分裂荧光素酶分子张力传感器,用于生物系统中机械力的生物发光读出。

Split Luciferase Molecular Tension Sensors for Bioluminescent Readout of Mechanical Forces in Biological Systems.

机构信息

Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.

Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States.

出版信息

ACS Sens. 2024 Jul 26;9(7):3489-3495. doi: 10.1021/acssensors.3c02664. Epub 2024 Jul 7.

Abstract

The ability of proteins to sense and transmit mechanical forces underlies many biological processes, but characterizing these forces in biological systems remains a challenge. Existing genetically encoded force sensors typically rely on fluorescence or bioluminescence resonance energy transfer (FRET or BRET) to visualize tension. However, these force sensing modules are relatively large, and interpreting measurements requires specialized image analysis and careful control experiments. Here, we report a compact molecular tension sensor that generates a bioluminescent signal in response to tension. This sensor (termed PILATeS) makes use of the split NanoLuc luciferase and consists of the titin I10 domain with the insertion of a 10-15 amino acid tag derived from the C-terminal β-strand of NanoLuc. Mechanical load across PILATeS mediates exposure of this tag to recruit the complementary split NanoLuc fragment, resulting in force-dependent bioluminescence. We demonstrate the ability of PILATeS to report biologically meaningful forces by visualizing forces at the interface between integrins and extracellular matrix substrates. We further use PILATeS as a genetically encoded sensor of tension experienced by the mechanosensing protein vinculin. We anticipate that PILATeS will provide an accessible means of visualizing molecular-scale forces in biological systems.

摘要

蛋白质感知和传递机械力的能力是许多生物过程的基础,但在生物系统中描述这些力仍然是一个挑战。现有的遗传编码力传感器通常依赖于荧光或生物发光共振能量转移(FRET 或 BRET)来可视化张力。然而,这些力传感模块相对较大,并且解释测量结果需要专门的图像分析和仔细的对照实验。在这里,我们报告了一种紧凑的分子张力传感器,它可以响应张力产生生物发光信号。该传感器(称为 PILATeS)利用了分裂的 NanoLuc 荧光酶,并由肌联蛋白 I10 结构域组成,其中插入了来自 NanoLuc C 端β链的 10-15 个氨基酸标签。PILATeS 上的机械负载介导该标签暴露,从而募集互补的分裂 NanoLuc 片段,导致力依赖性生物发光。我们通过可视化整合素和细胞外基质底物界面处的力来证明 PILATeS 报告有生物学意义的力的能力。我们进一步将 PILATeS 用作机械传感蛋白 vinculin 所经历张力的遗传编码传感器。我们预计 PILATeS 将为可视化生物系统中的分子尺度力提供一种易于使用的方法。

相似文献

3
Facile detection of mechanical forces across proteins in cells with STReTCh.利用 STReTCh 技术在细胞内轻松检测蛋白质中的机械力。
Cell Rep Methods. 2022 Sep 2;2(9):100278. doi: 10.1016/j.crmeth.2022.100278. eCollection 2022 Sep 19.
5
Engineering BRET-Sensor Proteins.工程化生物发光共振能量转移(BRET)传感器蛋白。
Methods Enzymol. 2017;589:87-114. doi: 10.1016/bs.mie.2017.01.010. Epub 2017 Feb 20.

本文引用的文献

1
Facile detection of mechanical forces across proteins in cells with STReTCh.利用 STReTCh 技术在细胞内轻松检测蛋白质中的机械力。
Cell Rep Methods. 2022 Sep 2;2(9):100278. doi: 10.1016/j.crmeth.2022.100278. eCollection 2022 Sep 19.
2
Molecular Force Measurement with Tension Sensors.张力传感器的分子力测量。
Annu Rev Biophys. 2021 May 6;50:595-616. doi: 10.1146/annurev-biophys-101920-064756. Epub 2021 Mar 12.
3
Mechanics of Development.发育机制
Dev Cell. 2021 Jan 25;56(2):240-250. doi: 10.1016/j.devcel.2020.11.025. Epub 2020 Dec 14.
9

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验