Boston Children's Hospital, Boston, Massachusetts.
Harvard Medical School, Boston, Massachusetts.
Pediatrics. 2024 Aug 1;154(2). doi: 10.1542/peds.2023-063059.
Patient and family violent outbursts toward staff, caregivers, or through self-harm, have increased during the ongoing behavioral health crisis. These health care-associated violence (HAV) episodes are likely under-reported. We sought to assess the feasibility of using nursing notes to identify under-reported HAV episodes.
We extracted nursing notes across inpatient units at 2 hospitals for 2019: a pediatric tertiary care center and a community-based hospital. We used a workflow for narrative data processing using a natural language processing (NLP) assisted manual review process performed by domain experts (a nurse and a physician). We trained the NLP models on the tertiary care center data and validated it on the community hospital data. Finally, we applied these surveillance methods to real-time data for 2022 to assess reporting completeness of new cases.
We used 70 981 notes from the tertiary care center for model building and internal validation and 19 332 notes from the community hospital for external validation. The final community hospital model sensitivity was 96.8% (95% CI 90.6% to 100%) and a specificity of 47.1% (39.6% to 54.6%) compared with manual review. We identified 31 HAV episodes in July to December 2022, of which 26 were reportable in accordance with the hospital internal criteria. Only 7 of 26 cases were reported by employees using the self-reporting system, all of which were identified by our surveillance process.
NLP-assisted review is a feasible method for surveillance of under-reported HAV episodes, with implementation and usability that can be achieved even at a low information technology-resourced hospital setting.
在持续的行为健康危机期间,患者和家属对工作人员、护理人员或通过自残对其进行暴力攻击的情况有所增加。这些与医疗保健相关的暴力(HAV)事件很可能报告不足。我们试图评估使用护理记录来识别未报告的 HAV 事件的可行性。
我们从 2019 年的 2 家医院的住院病房中提取护理记录:一家是儿科三级护理中心,另一家是社区医院。我们使用自然语言处理(NLP)辅助的人工审查流程的叙述性数据处理工作流程,由领域专家(一名护士和一名医生)进行手动审查。我们在三级护理中心的数据上训练 NLP 模型,并在社区医院的数据上进行验证。最后,我们将这些监测方法应用于 2022 年的实时数据,以评估新病例报告的完整性。
我们使用三级护理中心的 70981 条记录来构建和内部验证模型,使用社区医院的 19332 条记录进行外部验证。社区医院最终模型的灵敏度为 96.8%(95%CI90.6%至 100%),特异性为 47.1%(39.6%至 54.6%),与手动审查相比。我们在 2022 年 7 月至 12 月期间发现了 31 起 HAV 事件,其中根据医院内部标准,有 26 起是可报告的。只有 7 起事件被员工使用自我报告系统报告,这些事件都是通过我们的监测过程发现的。
NLP 辅助审查是监测未报告的 HAV 事件的一种可行方法,即使在信息技术资源较低的医院环境中,也可以实现实施和可用性。