Dong Xinyue, Hou Yameng, Deng Chaoyue, Wu Jinxiong, Fu Huixia
Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
Center of Quantum Materials and Devices, College of Physics, Chongqing University, Chongqing 401331, P. R. China.
Nanoscale. 2024 Aug 13;16(31):14766-14774. doi: 10.1039/d4nr01758g.
Two-dimensional semiconductors with large intrinsic polarity are highly attractive for applications in high-speed electronics, ultrafast and highly sensitive photodetectors and photocatalysis. However, previous studies mainly focus on neutral layered polar 2D materials with limited vertical dipoles and electrostatic potential difference (typically <1.5 eV). Here, using the first-principles calculations, we systematically investigated the polarity of few-layer BiOSe semiconductors with ultrahigh predicted room-temperature carrier mobility (1790 cm V s for the monolayer). Thanks to its unique non-neutral layered structure, few-layer BiOSe contributes to a substantial interlayer charge transfer (>0.5 e) and almost the highest electrostatic potential difference (Δ) of ∼4 eV among the experimentally attainable 2D layered materials. More importantly, positioning graphene on different charged layers ([BiO] or [BiSe]) switches the charge transfer direction, inducing selective n-doping or p-doping. Furthermore, we can use polar BiOSe as an exemplary assisted gate to gain additional holes or electrons except for the external electric field, thus breaking the traditional limitations of gate tunability (∼10 cm) observed in experimental settings. Our work not only expands the family of polar 2D semiconductors, but also makes a conceptual advance on using them as an assisted gate in transistors.
具有大固有极性的二维半导体在高速电子学、超快和高灵敏度光电探测器以及光催化应用中极具吸引力。然而,先前的研究主要集中在具有有限垂直偶极和静电势差(通常<1.5 eV)的中性层状极性二维材料上。在此,我们使用第一性原理计算,系统地研究了具有超高预测室温载流子迁移率(单层为1790 cm² V⁻¹ s⁻¹)的少层BiOSe半导体的极性。由于其独特的非中性层状结构,少层BiOSe导致了大量的层间电荷转移(>0.5 e),并且在实验可获得的二维层状材料中几乎具有最高的静电势差(Δ),约为4 eV。更重要的是,将石墨烯置于不同带电层([BiO]或[BiSe])上会改变电荷转移方向,从而实现选择性n型掺杂或p型掺杂。此外,除了外部电场外,我们可以使用极性BiOSe作为示例性辅助栅极来获得额外的空穴或电子,从而突破了实验环境中观察到的传统栅极可调性限制(约10 cm)。我们的工作不仅扩展了极性二维半导体家族,还在将它们用作晶体管中的辅助栅极方面取得了概念上的进展。