Suppr超能文献

用于透明细胞肾细胞癌预后评估的二硫键凋亡相关长链非编码RNA指数的开发与评估

Development and evaluation of a disulfidoptosis-related lncRNA index for prognostication in clear cell renal cell carcinoma.

作者信息

Guan Renhui, Zuo You, Du Qinglong, Zhang Aijing, Wu Yijian, Zheng Jianguo, Shi Tongrui, Wang Lin, Wang Hui, Yu Nengwang

机构信息

Clinical College, Chengde Medical University, Chengde, Hebei, 067000, China.

Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.

出版信息

Heliyon. 2024 Jun 3;10(12):e32294. doi: 10.1016/j.heliyon.2024.e32294. eCollection 2024 Jun 30.

Abstract

BACKGROUND

This study introduces a novel prognostic tool, the Disulfidoptosis-Related lncRNA Index (DRLI), integrating the molecular signatures of disulfidoptosis and long non-coding RNAs (lncRNAs) with the cellular heterogeneity of the tumor microenvironment, to predict clinical outcomes in patients with clear cell renal cell carcinoma (ccRCC).

METHODS

We analyzed 530 tumor and 72 normal samples from The Cancer Genome Atlas (TCGA), employing k-means clustering based on disulfidoptosis-associated gene expression to stratify ccRCC samples into prognostic groups. lncRNAs correlated with disulfidoptosis were identified and used to construct the DRLI, which was validated by Kaplan-Meier and receiver operating characteristic curves. We utilized single-cell deconvolution analysis to estimate the proportion of immune cell types within the tumor microenvironment, while the ESTIMATE and TIDE algorithms were employed to assess immune infiltration and potential response to immunotherapy.

RESULTS

The Disulfidoptosis-Related lncRNA Index (DRLI) effectively stratified ccRCC patients into high and low-risk groups, significantly impacting survival outcomes (P < 0.001). High-risk patients, marked by a unique lncRNA profile associated with disulfidoptosis, faced worse prognoses. Single-cell analysis revealed marked tumor microenvironment heterogeneity, especially in immune cell makeup, correlating with patient risk levels. In prognostic predictions, DRLI outperformed traditional clinical indicators, achieving AUC values of 0.779, 0.757, and 0.779 for 1-year, 3-year, and 5-year survival in the training set, and 0.746, 0.734, and 0.750 in the validation set. Notably, while the constructed nomogram showed exceptional predictive capability for short-term prognosis (AUC = 0.877), the DRLI displayed remarkable long-term predictive accuracy, with its AUC value reaching 0.823 for 10-year survival, closely approaching the nomogram's performance.

CONCLUSIONS

The study introduces the DRLI as a groundbreaking molecular stratification tool for ccRCC, enhancing prognostic precision and potentially guiding personalized treatment strategies. This advancement is particularly significant in the context of long-term survival predictions. Our findings also elucidate the complex interplay between disulfidoptosis, lncRNAs, and the immune microenvironment in ccRCC, offering a comprehensive perspective on its pathogenesis and progression. The DRLI and the nomogram together represent significant strides in ccRCC research, highlighting the importance of molecular-based assessments in predicting patient outcomes.

摘要

背景

本研究引入了一种新型预后工具,即二硫键凋亡相关长链非编码RNA指数(DRLI),它整合了二硫键凋亡和长链非编码RNA(lncRNA)的分子特征以及肿瘤微环境的细胞异质性,以预测透明细胞肾细胞癌(ccRCC)患者的临床结局。

方法

我们分析了来自癌症基因组图谱(TCGA)的530个肿瘤样本和72个正常样本,基于与二硫键凋亡相关的基因表达采用k均值聚类将ccRCC样本分层为预后组。鉴定出与二硫键凋亡相关的lncRNAs并用于构建DRLI,通过Kaplan-Meier曲线和受试者工作特征曲线进行验证。我们利用单细胞反卷积分析来估计肿瘤微环境中免疫细胞类型的比例,同时使用ESTIMATE和TIDE算法来评估免疫浸润和对免疫治疗的潜在反应。

结果

二硫键凋亡相关长链非编码RNA指数(DRLI)有效地将ccRCC患者分为高风险组和低风险组,对生存结局有显著影响(P<0.001)。高风险患者以与二硫键凋亡相关的独特lncRNA谱为特征,预后较差。单细胞分析揭示了显著的肿瘤微环境异质性,尤其是在免疫细胞组成方面,与患者风险水平相关。在预后预测中,DRLI优于传统临床指标,在训练集中1年、3年和5年生存率的AUC值分别为0.779、0.757和0.779,在验证集中分别为0.746、0.734和0.750。值得注意的是,虽然构建的列线图对短期预后显示出卓越的预测能力(AUC = 0.877),但DRLI显示出显著的长期预测准确性,其10年生存率的AUC值达到0.823,与列线图的性能相近。

结论

本研究引入DRLI作为ccRCC的一种开创性分子分层工具,提高了预后准确性,并可能指导个性化治疗策略。这一进展在长期生存预测方面尤为重要。我们的研究结果还阐明了ccRCC中二硫键凋亡、lncRNAs和免疫微环境之间的复杂相互作用,为其发病机制和进展提供了全面的视角。DRLI和列线图共同代表了ccRCC研究的重大进展,突出了基于分子的评估在预测患者结局中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93b8/11225747/580cab455934/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验