Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
Center for Computational and Systems Biology, National Taiwan University, Taipei, Taiwan.
BMC Med Genomics. 2022 May 2;14(Suppl 3):300. doi: 10.1186/s12920-022-01236-6.
Recently, non-coding RNAs are of growing interest, and more scientists attach importance to research on their functions. Long non-coding RNAs (lncRNAs) are defined as non-protein coding transcripts longer than 200 nucleotides. We already knew that lncRNAs are related to cancers and will be dysregulated in them. But most of their functions are still left to further study. A mechanism of RNA regulation, known as competing endogenous RNAs (ceRNAs), has been proposed to explain the complex relationships among mRNAs and lncRNAs by competing for binding with shared microRNAs (miRNAs).
We proposed an analysis framework to construct the association networks among lncRNA, mRNA, and miRNAs based on their expression patterns and decipher their network modules.
We collected a large-scale gene expression dataset of 1,061 samples from breast invasive carcinoma (BRCA) patients, each consisted of the expression profiles of 4,359 lncRNAs, 16,517 mRNAs, and 534 miRNAs, and applied the proposed analysis approach to interrogate them. We have uncovered the underlying ceRNA modules and the key modulatory lncRNAs for different subtypes of breast cancer.
We proposed a modulatory analysis to infer the ceRNA effects among mRNAs and lncRNAs and performed functional analysis to reveal the plausible mechanisms of lncRNA modulation in the four breast cancer subtypes. Our results might provide new directions for breast cancer therapeutics and the proposed method could be readily applied to other diseases.
最近,非编码 RNA 越来越受到关注,越来越多的科学家重视对其功能的研究。长非编码 RNA(lncRNA)被定义为长度大于 200 个核苷酸的非蛋白编码转录本。我们已经知道 lncRNA 与癌症有关,并在其中失调。但它们的大部分功能仍有待进一步研究。一种称为竞争内源 RNA(ceRNA)的 RNA 调控机制被提出,通过与共享 microRNA(miRNA)竞争结合来解释 mRNA 和 lncRNA 之间的复杂关系。
我们提出了一种分析框架,基于它们的表达模式构建 lncRNA、mRNA 和 miRNA 之间的关联网络,并破译它们的网络模块。
我们收集了来自乳腺浸润性癌(BRCA)患者的 1061 个大样本的大规模基因表达数据集,每个样本由 4359 个 lncRNA、16517 个 mRNA 和 534 个 miRNA 的表达谱组成,并应用了所提出的分析方法对其进行了分析。我们已经揭示了不同乳腺癌亚型的 ceRNA 模块和关键调节 lncRNA。
我们提出了一种调节分析来推断 mRNA 和 lncRNA 之间的 ceRNA 效应,并进行了功能分析以揭示 lncRNA 在四种乳腺癌亚型中的可能调节机制。我们的研究结果可能为乳腺癌治疗提供新的方向,所提出的方法可以很容易地应用于其他疾病。