Suppr超能文献

填充-掩蔽关联测试(FMAT):衡量自然语言中的命题。

The Fill-Mask Association Test (FMAT): Measuring propositions in natural language.

机构信息

School of Psychology and Cognitive Science, East China Normal University.

出版信息

J Pers Soc Psychol. 2024 Sep;127(3):537-561. doi: 10.1037/pspa0000396. Epub 2024 Jul 8.

Abstract

Recent advances in large language models are enabling the computational intelligent analysis of psychology in natural language. Here, the Fill-Mask Association Test (FMAT) is introduced as a novel and integrative method leveraging Masked Language Models to study and measure psychology from a perspective at the societal level. The FMAT uses Bidirectional Encoder Representations from Transformers (BERT) models to compute semantic probabilities of option words filling in the masked blank of a designed query (i.e., a clozelike contextualized sentence). The current research presents 15 studies that establish the reliability and validity of the FMAT in predicting factual associations (Studies 1A-1C), measuring attitudes/biases (Studies 2A-2D), capturing social stereotypes (Studies 3A-3D), and retrospectively delineating lay perceptions of sociocultural changes over time (Studies 4A-4D). Empirically, the FMAT replicated seminal findings previously obtained with human participants (e.g., the Implicit Association Test) and other big-data text-analytic methods (e.g., word frequency analysis, the Word Embedding Association Test), demonstrating robustness across 12 BERT model variants and diverse training text corpora. Theoretically, the current findings substantiate the propositional (vs. associative) perspective on how semantic associations are represented in natural language. Methodologically, the FMAT allows for more fine-grained language-based psychological measurement, with an R package developed to streamline its workflow for use on broader research questions. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

最近大型语言模型的进展使得对自然语言中的心理学进行计算智能分析成为可能。在这里,引入了掩蔽词联想测试(FMAT),作为一种新颖的综合方法,利用掩蔽语言模型从社会层面研究和衡量心理学。FMAT 使用来自 Transformer 的双向编码器表示(BERT)模型来计算设计查询(即 cloze 上下文句子)的掩蔽空白处的选项词的语义概率。当前的研究提出了 15 项研究,确立了 FMAT 在预测事实关联(研究 1A-1C)、测量态度/偏见(研究 2A-2D)、捕捉社会刻板印象(研究 3A-3D)以及回顾性描绘随着时间的推移社会文化变化的一般看法(研究 4A-4D)方面的可靠性和有效性。从经验上看,FMAT 复制了先前用人作为被试(例如,内隐联想测验)和其他大数据文本分析方法(例如,词频分析、词嵌入联想测试)获得的开创性发现,证明了在 12 个 BERT 模型变体和不同的训练文本语料库上的稳健性。从理论上讲,当前的发现证实了自然语言中语义关联是如何表示的命题(而非联想)观点。从方法论上讲,FMAT 允许进行更精细的基于语言的心理测量,开发了一个 R 包来简化其工作流程,以用于更广泛的研究问题。(PsycInfo 数据库记录(c)2024 APA,保留所有权利)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验