Zhang Ke, Yang Yan, Yu Jun, Fan Jianping, Jiang Hanliang, Huang Qingming, Han Weidong
IEEE Trans Med Imaging. 2024 Dec;43(12):4470-4482. doi: 10.1109/TMI.2024.3424505. Epub 2024 Dec 2.
The potential of automated radiology report generation in alleviating the time-consuming tasks of radiologists is increasingly being recognized in medical practice. Existing report generation methods have evolved from using image-level features to the latest approach of utilizing anatomical regions, significantly enhancing interpretability. However, directly and simplistically using region features for report generation compromises the capability of relation reasoning and overlooks the common attributes potentially shared across regions. To address these limitations, we propose a novel region-based Attribute Prototype-guided Iterative Scene Graph generation framework (AP-ISG) for report generation, utilizing scene graph generation as an auxiliary task to further enhance interpretability and relational reasoning capability. The core components of AP-ISG are the Iterative Scene Graph Generation (ISGG) module and the Attribute Prototype-guided Learning (APL) module. Specifically, ISSG employs an autoregressive scheme for structural edge reasoning and a contextualization mechanism for relational reasoning. APL enhances intra-prototype matching and reduces inter-prototype semantic overlap in the visual space to fully model the potential attribute commonalities among regions. Extensive experiments on the MIMIC-CXR with Chest ImaGenome datasets demonstrate the superiority of AP-ISG across multiple metrics.
在医学实践中,自动生成放射学报告以减轻放射科医生耗时任务的潜力日益得到认可。现有的报告生成方法已从使用图像级特征发展到利用解剖区域的最新方法,显著提高了可解释性。然而,直接简单地使用区域特征进行报告生成会损害关系推理能力,并忽略各区域可能共享的共同属性。为解决这些局限性,我们提出了一种用于报告生成的新颖的基于区域的属性原型引导迭代场景图生成框架(AP-ISG),利用场景图生成作为辅助任务,进一步提高可解释性和关系推理能力。AP-ISG的核心组件是迭代场景图生成(ISGG)模块和属性原型引导学习(APL)模块。具体而言,ISSG采用自回归方案进行结构边缘推理,并采用情境化机制进行关系推理。APL增强了原型内匹配,并减少了视觉空间中原型间的语义重叠,以充分建模各区域之间潜在的属性共性。在MIMIC-CXR与胸部图像基因组数据集上进行的大量实验证明了AP-ISG在多个指标上的优越性。