Suppr超能文献

通过机器学习参数化力场预测的过渡金属二硫属化物的热机械性能

Thermomechanical Properties of Transition Metal Dichalcogenides Predicted by a Machine Learning Parameterized Force Field.

作者信息

Ali Mohamed S M M, Nguyen Hoang, Paci Jeffrey T, Zhang Yue, Espinosa Horacio D

机构信息

Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, United States.

Theoretical and Applied Mechanics Program, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, United States.

出版信息

Nano Lett. 2024 Jul 17;24(28):8465-8471. doi: 10.1021/acs.nanolett.4c00285. Epub 2024 Jul 8.

Abstract

The mechanical and thermal properties of transition metal dichalcogenides (TMDs) are directly relevant to their applications in electronics, thermoelectric devices, and heat management systems. In this study, we use a machine learning (ML) approach to parametrize molecular dynamics (MD) force fields to predict the mechanical and thermal transport properties of a library of monolayered TMDs (MoS, MoTe, WSe, WS, and ReS). The ML-trained force fields were then employed in equilibrium MD simulations to calculate the lattice thermal conductivities of the foregoing TMDs and to investigate how they are affected by small and large mechanical strains. Furthermore, using nonequilibrium MD, we studied thermal transport across grain boundaries. The presented approach provides a fast albeit accurate methodology to compute both mechanical and thermal properties of TMDs, especially for relatively large systems and spatially complex structures, where density functional theory computational cost is prohibitive.

摘要

过渡金属二硫属化物(TMDs)的机械和热性能与其在电子学、热电器件及热管理系统中的应用直接相关。在本研究中,我们采用机器学习(ML)方法对分子动力学(MD)力场进行参数化,以预测一系列单层TMDs(MoS、MoTe、WSe、WS和ReS)的机械和热输运性质。然后,将经过ML训练的力场用于平衡MD模拟,以计算上述TMDs的晶格热导率,并研究它们如何受到小应变和大应变的影响。此外,我们使用非平衡MD研究了跨晶界的热输运。所提出的方法提供了一种快速且准确的方法来计算TMDs的机械和热性能,特别是对于密度泛函理论计算成本过高的相对大型系统和空间复杂结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验