Ali Mohamed S M M, Nguyen Hoang, Paci Jeffrey T, Zhang Yue, Espinosa Horacio D
Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, United States.
Theoretical and Applied Mechanics Program, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, United States.
Nano Lett. 2024 Jul 17;24(28):8465-8471. doi: 10.1021/acs.nanolett.4c00285. Epub 2024 Jul 8.
The mechanical and thermal properties of transition metal dichalcogenides (TMDs) are directly relevant to their applications in electronics, thermoelectric devices, and heat management systems. In this study, we use a machine learning (ML) approach to parametrize molecular dynamics (MD) force fields to predict the mechanical and thermal transport properties of a library of monolayered TMDs (MoS, MoTe, WSe, WS, and ReS). The ML-trained force fields were then employed in equilibrium MD simulations to calculate the lattice thermal conductivities of the foregoing TMDs and to investigate how they are affected by small and large mechanical strains. Furthermore, using nonequilibrium MD, we studied thermal transport across grain boundaries. The presented approach provides a fast albeit accurate methodology to compute both mechanical and thermal properties of TMDs, especially for relatively large systems and spatially complex structures, where density functional theory computational cost is prohibitive.
过渡金属二硫属化物(TMDs)的机械和热性能与其在电子学、热电器件及热管理系统中的应用直接相关。在本研究中,我们采用机器学习(ML)方法对分子动力学(MD)力场进行参数化,以预测一系列单层TMDs(MoS、MoTe、WSe、WS和ReS)的机械和热输运性质。然后,将经过ML训练的力场用于平衡MD模拟,以计算上述TMDs的晶格热导率,并研究它们如何受到小应变和大应变的影响。此外,我们使用非平衡MD研究了跨晶界的热输运。所提出的方法提供了一种快速且准确的方法来计算TMDs的机械和热性能,特别是对于密度泛函理论计算成本过高的相对大型系统和空间复杂结构。