Giannazzo Filippo, Schilirò Emanuela, Greco Giuseppe, Roccaforte Fabrizio
CNR-IMM, Strada VIII, 5-5121 Catania, Italy.
Nanomaterials (Basel). 2020 Apr 22;10(4):803. doi: 10.3390/nano10040803.
Semiconducting transition metal dichalcogenides (TMDs) are promising materials for future electronic and optoelectronic applications. However, their electronic properties are strongly affected by peculiar nanoscale defects/inhomogeneities (point or complex defects, thickness fluctuations, grain boundaries, etc.), which are intrinsic of these materials or introduced during device fabrication processes. This paper reviews recent applications of conductive atomic force microscopy (C-AFM) to the investigation of nanoscale transport properties in TMDs, discussing the implications of the local phenomena in the overall behavior of TMD-based devices. Nanoscale resolution current spectroscopy and mapping by C-AFM provided information on the Schottky barrier uniformity and shed light on the mechanisms responsible for the Fermi level pinning commonly observed at metal/TMD interfaces. Methods for nanoscale tailoring of the Schottky barrier in MoS for the realization of ambipolar transistors are also illustrated. Experiments on local conductivity mapping in monolayer MoS grown by chemical vapor deposition (CVD) on SiO substrates are discussed, providing a direct evidence of the resistance associated to the grain boundaries (GBs) between MoS domains. Finally, C-AFM provided an insight into the current transport phenomena in TMD-based heterostructures, including lateral heterojunctions observed within MoWSe alloys, and vertical heterostructures made by van der Waals stacking of different TMDs (e.g., MoS/WSe) or by CVD growth of TMDs on bulk semiconductors.
半导体过渡金属二硫属化物(TMDs)是未来电子和光电子应用中很有前景的材料。然而,它们的电子特性会受到特殊的纳米级缺陷/不均匀性(点缺陷或复杂缺陷、厚度波动、晶界等)的强烈影响,这些缺陷是这些材料固有的,或者是在器件制造过程中引入的。本文综述了导电原子力显微镜(C-AFM)在研究TMDs纳米级输运特性方面的最新应用,讨论了局部现象对基于TMD的器件整体行为的影响。C-AFM的纳米级分辨率电流光谱和成像提供了有关肖特基势垒均匀性的信息,并揭示了在金属/TMD界面常见的费米能级钉扎的机制。还阐述了在MoS中对肖特基势垒进行纳米级调控以实现双极性晶体管的方法。讨论了在SiO衬底上通过化学气相沉积(CVD)生长的单层MoS中进行局部电导率成像的实验,提供了与MoS畴之间的晶界(GBs)相关电阻的直接证据。最后,C-AFM深入了解了基于TMD的异质结构中的电流传输现象,包括在MoWSe合金中观察到的横向异质结,以及通过不同TMDs(如MoS/WSe)的范德华堆叠或在体半导体上通过CVD生长TMDs制成的垂直异质结构。