Muscat Stefano, Errico Silvia, Danani Andrea, Chiti Fabrizio, Grasso Gianvito
Dalle Molle Institute for Artificial Intelligence IDSIA USI-SUPSI, Via la Santa 1 ,Lugano-Viganello 6962, Switzerland.
Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy.
J Chem Theory Comput. 2024 Jul 9;20(18):8279-89. doi: 10.1021/acs.jctc.4c00127.
Understanding the molecular mechanisms of the interactions between specific compounds and cellular membranes is essential for numerous biotechnological applications, including targeted drug delivery, elucidation of the drug mechanism of action, pathogen identification, and novel antibiotic development. However, estimation of the free energy landscape associated with solute binding to realistic biological systems is still a challenging task. In this work, we leverage the Time-lagged Independent Component Analysis (TICA) in combination with neural networks (NN) through the Deep-TICA approach for determining the free energy associated with the membrane insertion processes of two natural aminosterol compounds, trodusquemine (TRO), and squalamine (SQ). These compounds are particularly noteworthy because they interact with the outer layer of neuron membranes, protecting them from the toxic action of misfolded proteins involved in neurodegenerative disorders, in both their monomeric and oligomeric forms. We demonstrate how this strategy could be used to generate an effective collective variable for describing solute absorption in the membrane and for estimating free energy landscape of translocation via on-the-fly probability enhanced sampling (OPES) method. In this context, the computational protocol allowed an exhaustive characterization of the aminosterol entry pathway into a neuron-like lipid bilayer. Furthermore, it provided accurate prediction of membrane binding affinities, in close agreement with the experimental binding data obtained by using fluorescently labeled aminosterols and large unilamellar vesicles (LUVs). The findings contribute significantly to our understanding of aminosterol entry pathways and aminosterol-lipid membrane interactions. Finally, the computational methods deployed in this study further demonstrate considerable potential for investigating membrane binding processes.
了解特定化合物与细胞膜之间相互作用的分子机制对于众多生物技术应用至关重要,包括靶向药物递送、阐明药物作用机制、病原体鉴定和新型抗生素开发。然而,估计与溶质结合到实际生物系统相关的自由能景观仍然是一项具有挑战性的任务。在这项工作中,我们通过深度时滞独立成分分析(Deep-TICA)方法,将时滞独立成分分析(TICA)与神经网络(NN)相结合,来确定两种天然氨基甾醇化合物曲古抑菌素(TRO)和鲨胺(SQ)的膜插入过程相关的自由能。这些化合物特别值得注意,因为它们以单体和寡聚体形式与神经元膜的外层相互作用,保护它们免受神经退行性疾病中错误折叠蛋白质的毒性作用。我们展示了如何使用这种策略来生成一个有效的集体变量,用于描述溶质在膜中的吸收以及通过实时概率增强采样(OPES)方法估计转运的自由能景观。在这种情况下,计算协议允许对氨基甾醇进入类神经元脂质双层的途径进行详尽的表征。此外,它提供了膜结合亲和力的准确预测,与使用荧光标记的氨基甾醇和大单层囊泡(LUVs)获得的实验结合数据非常一致。这些发现对我们理解氨基甾醇进入途径和氨基甾醇 - 脂质膜相互作用有很大贡献。最后,本研究中采用的计算方法进一步证明了在研究膜结合过程方面具有相当大的潜力。