Centre for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya.
Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America.
PLoS One. 2024 Jul 9;19(7):e0302521. doi: 10.1371/journal.pone.0302521. eCollection 2024.
Antibiotic exposure is associated with resistant bacterial colonization, but this relationship can be obscured in community settings owing to horizontal bacterial transmission and broad distributions. Locality-level exposure estimates considering inhabitants' length of stay, exposure history, and exposure conditions of areas nearby could clarify these relationships. We used prescription data filled during 2010-2015 for 23 antibiotic types for members of georeferenced households in a population-based infectious disease surveillance platform. For each antibiotic and locality, we generated exposure estimates, expressed in defined daily doses (DDD) per 1000 inhabitant days of observation (IDO). We also estimated relevant environmental parameters, such as the distance of each locality to water, sanitation, and other amenities. We used data on ampicillin, ceftazidime, and trimethoprim-and-sulfamethoxazole resistant Escherichia coli colonization from stool cultures of asymptomatic individuals in randomly selected households. We tested exposure-colonization associations using permutation analysis of variance and logistic generalized linear mixed-effect models. Overall, exposure was highest for trimethoprim-sulfamethoxazole (1.8 DDD per 1000 IDO), followed by amoxicillin (0.7 DDD per 1000 IDO). Of 1,386 unique household samples from 195 locations tested between September 2015 and January 2016, 90%, 85% and 4% were colonized with E. coli resistant to trimethoprim and sulfamethoxazole, ampicillin, and ceftazidime, respectively. Ceftazidime-resistant E. coli colonization was common in areas with increased trimethoprim-sulfamethoxazole, cloxacillin, and erythromycin exposure. No association with any of the physical environmental variables was observed. We did not detect relationships between distribution patterns of ampicillin or trimethoprim-and-sulfamethoxazole resistant E. coli colonization and the risk factors assessed. Appropriate temporal and spatial scaling of raw antibiotic exposure data to account for evolution and ecological contexts of antibiotic resistance could clarify exposure-colonization relationships in community settings and inform community stewardship program.
抗生素暴露与耐药细菌定植有关,但由于细菌的水平传播和广泛分布,这种关系在社区环境中可能会被掩盖。考虑到居民的停留时间、暴露史和附近地区的暴露条件,对地方层面的暴露进行估计可以澄清这些关系。我们使用地理参考家庭中成员在基于人群的传染病监测平台上填写的 2010-2015 年期间的 23 种抗生素的处方数据。对于每种抗生素和地方,我们生成暴露估计值,以每 1000 个观察日(IDO)的定义日剂量(DDD)表示。我们还估计了相关的环境参数,例如每个地方与水、卫生设施和其他便利设施的距离。我们使用来自随机选择家庭中无症状个体的粪便培养物中氨苄青霉素、头孢他啶和复方磺胺甲噁唑耐药大肠埃希菌定植的数据来测试暴露-定植关联。我们使用方差置换分析和逻辑广义线性混合效应模型来测试暴露-定植关联。总的来说,磺胺甲噁唑-甲氧苄啶(每 1000 IDO 1.8 DDD)的暴露量最高,其次是阿莫西林(每 1000 IDO 0.7 DDD)。在 2015 年 9 月至 2016 年 1 月期间,对来自 195 个地点的 1386 个独特家庭样本进行了测试,其中 90%、85%和 4%的样本分别对磺胺甲噁唑-甲氧苄啶、氨苄青霉素和头孢他啶耐药的大肠埃希菌定植。在磺胺甲噁唑-甲氧苄啶、氯唑西林和红霉素暴露增加的地区,头孢他啶耐药的大肠埃希菌定植很常见。没有观察到任何与物理环境变量的关联。我们没有检测到氨苄青霉素或磺胺甲噁唑-甲氧苄啶耐药大肠埃希菌定植的分布模式与评估的风险因素之间的关系。对原始抗生素暴露数据进行适当的时间和空间缩放,以解释抗生素耐药性的演变和生态背景,可以澄清社区环境中的暴露-定植关系,并为社区管理计划提供信息。