Suppr超能文献

用于早期阿拉伯语手语学习者的智能现实生活关键像素图像检测系统。

Intelligent real-life key-pixel image detection system for early Arabic sign language learners.

作者信息

Alamri Faten S, Rehman Amjad, Abdullahi Sunusi Bala, Saba Tanzila

机构信息

Department of Mathematical Sciences, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.

Artificial Intelligence & Data Analytics Lab (AIDA) CCIS Prince Sultan University, Riyadh, Saudi Arabia.

出版信息

PeerJ Comput Sci. 2024 Jun 14;10:e2063. doi: 10.7717/peerj-cs.2063. eCollection 2024.

Abstract

Lack of an effective early sign language learning framework for a hard-of-hearing population can have traumatic consequences, causing social isolation and unfair treatment in workplaces. Alphabet and digit detection methods have been the basic framework for early sign language learning but are restricted by performance and accuracy, making it difficult to detect signs in real life. This article proposes an improved sign language detection method for early sign language learners based on the You Only Look Once version 8.0 (YOLOv8) algorithm, referred to as the intelligent sign language detection system (iSDS), which exploits the power of deep learning to detect sign language-distinct features. The iSDS method could overcome the false positive rates and improve the accuracy as well as the speed of sign language detection. The proposed iSDS framework for early sign language learners consists of three basic steps: (i) image pixel processing to extract features that are underrepresented in the frame, (ii) inter-dependence pixel-based feature extraction using YOLOv8, (iii) web-based signer independence validation. The proposed iSDS enables faster response times and reduces misinterpretation and inference delay time. The iSDS achieved state-of-the-art performance of over 97% for precision, recall, and F1-score with the best mAP of 87%. The proposed iSDS method has several potential applications, including continuous sign language detection systems and intelligent web-based sign recognition systems.

摘要

对于听力障碍人群而言,缺乏有效的早期手语学习框架可能会产生创伤性后果,导致社交孤立以及在工作场所受到不公平待遇。字母和数字检测方法一直是早期手语学习的基本框架,但受性能和准确性的限制,难以在现实生活中检测出手语。本文提出了一种基于You Only Look Once版本8.0(YOLOv8)算法的改进型早期手语学习者手语检测方法,称为智能手语检测系统(iSDS),该方法利用深度学习的力量来检测手语的独特特征。iSDS方法可以克服误报率,提高手语检测的准确性和速度。所提出的针对早期手语学习者的iSDS框架包括三个基本步骤:(i)图像像素处理,以提取帧中代表性不足的特征;(ii)使用YOLOv8基于相互依赖像素的特征提取;(iii)基于网络的手语者独立性验证。所提出的iSDS能够实现更快的响应时间,并减少误解和推理延迟时间。iSDS在精度、召回率和F1分数方面达到了超过97%的先进性能,最佳平均精度均值(mAP)为87%。所提出的iSDS方法有几个潜在应用,包括连续手语检测系统和基于网络的智能手语识别系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a1/11232623/b26cfdfbf2e2/peerj-cs-10-2063-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验